mRNA in situ Hybridization Analysis of Vascular Endothelial Growth Factor and Matrix Metalloproteinase-1 in Colorectal Cancer

Noor Hashim Ismail
Department of Cancer Research, Iraqi Center for Cancer and Medical Genetics Research, Al-Mustansiriyah University, Baghdad, Iraq.
E-mail: noor.hashim@iccmgr.org

Abstract:
Colorectal cancer is a major global health problem. The aim of the current study is to determine the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase -1 (MMP-1), in colorectal cancer patients using in situ hybridization technique, formalin-fixed and paraffin embedded tissue sections. Thirty colorectal cancer patients were obtained from the archive of the pathology laboratory of Al-Yarmouk Teaching Hospital from January 2013 to July 2014. In addition to, formalin-fixed, paraffin embedded tissue sections of twenty normal colon tissues were collected and used as a control group. Each tissue block was subjected to cut as serial thin sections of (4μm) thickness and then fixed on positive charged slides, to be used for In situ hybridization for the evaluation of MMP-1 and VEGF expression.

A highly significant difference (p<0.01) was noted in the mean percentage of MMP-1 and VEGF mRNA in situ expression respectively between the colorectal cancer group and control group. The study revealed a highly significant positive correlation (P<0.01) between MMP-1 and VEGF expression in colorectal cancer group. In conclusion, abnormal high expressions of VEGF and MMP-1 may represent the early molecular changes in the development of colorectal cancer.

Key words: Colorectal cancer, in situ hybridization, vascular endothelial growth factor, matrix metalloproteinase -1.
Introduction:

Worldwide, colorectal cancer is the second most common cancer in women and the third in men [1,2]. In Iraq, according to the 2012 Iraqi Cancer board report, colorectal cancer ranked the sixth among the commonest ten leading cancers in 2010 [3].

Vascular endothelial growth factor (VEGF) is an endothelial, cell-specific mitogen. It has been characterized as a major regulator of angiogenesis with many physiological and pathological, during development and adulthood[4,5]. Angiogenesis is a multi-step process, it involves the sprouting of new blood vessels from pre-existing vasculature; it is an essential for the growth and progression of solid tumors [6]. Vascular endothelial growth factor (VEGF) is a positive regulator of angiogenesis; it plays a key role in tumor angiogenesis and shows a high expression in many tumors including colorectal cancer [7].

Tumor invasive nature is associated with degradation of the interstitial stroma, which is the main component of the extracellular matrix (ECM)[8]. Matrix metalloproteinases (MMPs) family is an extracellular matrix proteolytic enzyme, which is selectively degrading various proteins of ECM. This event can be supported by collagenases, particularly interstitial collagenase matrix metalloproteinase -1 (MMP-1)[9]. MMP-1 specifically degrades collagens I, II, and III [10].

The objective of the current study is to determine the expression of VEGF and MMP1 and the correlation of their expression in colorectal cancer.

Materials and Methods:

Tissue samples, sectioning and slide preparation

This study was designed as a retrospective study. Thirty Formalin-fixed, paraffin embedded tissue sections from colorectal cancer patients were obtained from the archive of the Pathology laboratory of Al-Yarmouk Teaching Hospital from January 2013 to July 2014. The diagnosis of these tissue sections were primarily based on their accompanied records. In addition Formalin-fixed, paraffin embedded blocks from twenty normal colon tissues were collected and used as control group. All tissue sections were subjected to cut as serial thin sections of (4μm) thickness and were fixed on positive charge slides to be used for In situ hybridization for the evaluation of MMP-1 and VEGF expression. Ethical approval for use of all specimens was obtained.

In situ hybridization procedure (ISH)

In situ hybridization was conducted in accordance with manufacturer’s instruction (Maxim Biotech, Inc., USA) in histopathology laboratory, cancer research department at Iraqi center for cancer and medical genetic...
research, Al-Mustansiriyah University. For \textit{in situ} hybridization technique, DNA Probe Hybridization/Detection System \textit{in situ} kit (Maxim Biotech, Inc., USA, cat # IH-60001(IH-0050), high sensitivity type) was used. The probes were biotinylated long DNA probes for Human MMP-1 (395bp.) (Maxim Biotech, Inc., USA, cat # IH-60024) and VEGF, all types (294bp.) (Maxim Biotech, Inc., USA, cat # IH-60038).

Briefly, slides were heated at 60°C in oven overnight, deparaffinized in xylene and graded alcohols. The tissue was digested with 1X proteinase k solution for 15 min at 37°C. The tissue slides were washed in deionised water dehydrated in graded alcohols, and dried by incubation at 37°C for 5 minutes. After application of a denatured biotinylated probes for MMP-1 and VEGF to the target sequence and denaturation of the target mRNAs in tissue sections, hybridization conducted by overnight incubation at 37°C using moisturised chamber. Post-hybridization wash was performed the next day, followed by detection using the DNA Probe hybridization, detection System \textit{in situ} kit. Hybridization, detection System yields an intense blue-black signal that appears at the specific site of the hybridized probe.

Scoring
The mRNA of MMP-1 and VEGF were measured by counting the positive cells in the tissue that appear with a blue-black (BCIP/NBT) nuclear staining under the light microscope. The score was the average from 10 distinct high-power fields observed under ×400 magnification. The percentage of positively stained cell was calculated for each case by taking the mean of the percentages of the positively stained cell in the 10 fields. MMP-1 and VEGF mRNA expression was classified into four categories, depending on the percentage of cells stained: 0 = no staining, 1 = positive staining in <25% of the sample, 2 = positive staining in 25%–50% of the sample, 3 = positive staining in >50% of the sample.\cite{111}

Statistical analysis
Statistical analysis was done using Student test (t-test), Chi-Square test (χ^2), and Pearson Correlation (r) to determine the difference in the \textit{in situ} expression of MMP-1 and VEGF between different groups (colorectal cancer and control group). All statistical analysis was conducted using Statistical Package for Social Sciences (SPSS) version 22. Values were considered statistically significant when $p<0.05$, $p<0.01$ and non-Significant.

Results:
\textit{In situ} hybridization detection of MMP-1 and VEGF
The results of \textit{in situ} hybridization detection of MMP-1 and VEGF, as shown in (tables-1and 2, figures-1 and 2), and based on t-test of significant, there were highly significant difference ($p<0.01$) in the mean percentage of MMP-1 and VEGF mRNA \textit{in situ} expression respectively in the colorectal cancer group compared with control group.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Group} & \textbf{No.} & \textbf{Expression of MMP-1 mRNA ISH \% (Mean ±S.E.)} & \textbf{Comparison of Significance} \\
\hline
Colorectal cancer & 30 & 67.05±4.65 & 0.000 \text{ Highly significant ($p<0.01$)} \\
Control & 20 & 6.21±1.89 & 0.000 \text{ Highly significant ($p<0.01$)} \\
\hline
\end{tabular}
\caption{The expression of MMP-1 mRNA ISH \% in study group.}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Group} & \textbf{No.} & \textbf{Expression of VEGF mRNA ISH \% (Mean ±S.E.)} & \textbf{Comparison of Significance} \\
\hline
Colorectal cancer & 30 & 61.81±6.62 & 0.000 \text{ Highly significant ($p<0.01$)} \\
Control & 20 & 5.15±1.87 & 0.000 \text{ Highly significant ($p<0.01$)} \\
\hline
\end{tabular}
\caption{The expression of VEGF mRNA ISH \% in study group.}
\end{table}
Figure-1: *In situ* hybridization for MMP-1 and VEGF of colorectal cancer using BCIP/NBT substrate/chromogen and counter stained by Hematoxyline (X400).
A- Positive expression of MMP-1.
B- Negative expression of MMP-1.
C- Positive expression of VEGF.
D- Negative expression of VEGF.
In situ hybridization for MMP-1 and VEGF of normal colon using BCIP/NBT substrate/chromogen and counter stained by Hematoxyline (X400).
A- Positive expression of MMP-1.
B- Negative expression of MMP-1.
C- Positive expression of VEGF.
D- Negative expression of VEGF.
Statistical analysis using Chi-square test to study the association between MMP-1 and VEGF mRNA expression. Results revealed a highly significant association (p<0.01) between the colorectal cancer group and control group in the four scoring levels (table-3 and 4). High percentage of MMP-1 expression was detected in 80% (24 out of 30) of colorectal cancer patients tissues in high score (score 3) while in control group 60% (12 out of 20) were detected in low score (score 0). VEGF expression high percentage was found in 76.7% (23 out of 30) of colorectal cancer patients tissues in high score (score 3) while in control group 70% (14 out of 20) were detected in low score (score 0). Furthermore, the study showed a highly significant positive correlation (P<0.01) between MMP-1 and VEGF expression in colorectal cancer group and a significant positive correlation (P<0.05) between MMP-1 and VEGF expression in control group (table-5).

Table-3: Frequency distribution of ISH for MMP-1 according to signal percentage score among study group.

<table>
<thead>
<tr>
<th>Group</th>
<th>No.</th>
<th>MMP-1 score N (%)</th>
<th>Comparison of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal cancer</td>
<td>30</td>
<td>1(3.3%) 3(10%) 2(6.7%) 24(80%)</td>
<td>p-value: 0.000, significance: Highly significant (p<0.01)</td>
</tr>
<tr>
<td>control</td>
<td>20</td>
<td>12(60%) 8(40%) 0(0%) 0(0%)</td>
<td></td>
</tr>
</tbody>
</table>

Table-4: Frequency distribution of ISH for VEGF according to signal percentage score among study group.

<table>
<thead>
<tr>
<th>Group</th>
<th>No.</th>
<th>VEGF</th>
<th>Comparison of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal cancer</td>
<td>30</td>
<td>1(3.3%) 2(6.7%) 4(13.3%) 23(76.7%)</td>
<td>p-value: 0.000, significance: Highly significant (p<0.01)</td>
</tr>
<tr>
<td>control</td>
<td>20</td>
<td>14(70%) 6(30%) 0(0%) 0(0%)</td>
<td></td>
</tr>
</tbody>
</table>

Table-5: Correlation of MMP-1 and VEGF mRNA expression in study group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>Correlation Coefficient (r)</th>
<th>p-value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP-1 and VEGF</td>
<td>Colorectal cancer</td>
<td>0.621</td>
<td>0.000</td>
<td>Highly significant (p<0.01)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.437</td>
<td>0.035</td>
<td>Significant (p<0.05)</td>
</tr>
</tbody>
</table>

Discussion:
This study described the expression of VEGF and MMP-1 mRNA respectively in the colorectal cancer patients and control group (normal colon) tissues. Using in situ hybridization, the results of the present study showed that, a highly significant difference (p<0.01) in the mean percentage of MMP-1 mRNA in situ expression in the colorectal cancer group compared with the control group. MMP-1 mRNA high percentage, was detected in 80% (24 out of 30) of colorectal cancer patients tissues in high score (score 3) while in control group 60% (12 out of 20) were detected in low score (score 0). The major proteins in the extracellular matrix in the gastrointestinal tract are collagens, especially of types I and III, which are...
important for cell adhesion and the invasion of carcinoma cells. MMP-1, belong to the family of MMPs and specifically degrades collagens I, II, and III. In addition, it can cleave several other matrix and non-matrix proteins including growth factors, and this way regulate cell growth and survival. These results are consistent with result of previous studies that reported increased expression of MMP-1 mRNA in the colorectal cancer patients tissues compared with normal control.

The results of this study also revealed a high significant difference (p<0.01) in the mean percentage of VEGF mRNA in situ expression in the colorectal cancer group compared with control group. Based on scoring level VEGF mRNA higher percentage was detected in 76.7 % (23 out of 30) of colorectal cancer patients in high score (score 3) while in control group 70% (14 out of 20) were detected in low score (score 0).

Angiogenesis is an important process in tumor growth, invasion and metastasis. VEGF is one of the angiogenic factors, that regulate the angiogenesis process. These findings possibly manifest the important role of VEGF cellular expression in the pathogenesis of colorectal cancer and reflect degree of vascularization of colorectal cancers as detected by in situ hybridization and immunohistochemistry.

Furthermore, the study revealed a highly significant positive correlation (P<0.01) between MMP-1 and VEGF expression in colorectal cancer group and a significant positive correlation (P<0.05) between MMP-1 and VEGF expression in control group. These results showed that, MMP-1 and VEGF are highly interact with each other and function synergistically, subsequently increasing their effect in colorectal cancer, in line with their contribution to development of a tumor vasculature allowing malignant tumors growth and metastatic spread. Angiogenesis is dependent, at least in part, on the functions of MMPs, since they involved in degradation of the basement membrane and perivascular ECM components, release of angiogenic factors, production of endogenous angiogenic inhibitors, and the unmasking of cryptic biologically relevant sites in ECM components.

Conclusions:
In conclusion, VEGF, and MMP-1 play an important role in colorectal carcinoma. Abnormal expressions of VEGF and MMP-1 may represent one of the early molecular changes in the development of colorectal cancer.

References:
17 - Kitadai Y, Ellis LM, Takahashi Y, Bucana CD, Anzai H, Tahara E, et al. Multiparametric in Situ Messenger RNA Hybridization Analysis to Detect Metastasis-related Genes in Surgical Specimens of Human Colon Carci-

Date of acceptance: 25-7-2016