# Synthesis and Characterization of Palladium (II) Complexes With Some Pyridine Derivatives 

M. J. Al-Jeboori*, S. M. Lateef*, A. R. A. AL-Shuaibi**<br>*Department of Chemistry, Collage of Education, Ibn Al-Haitham University of Baghdad<br>**Department of Chemistry, collage of Sciences, Aden University

> تحضير ودراسة معقدات البلاديوم (II) مع بعض مشتقات البريدين

تضمن هذا البحث تحضير معقدات جديدة للبلاديوم (II) مع مشنقات البريدين ذات الصيغة
العامة:
: حيث trans- $\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}^{1}\right]$, trans $-\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}{ }_{2}\right],\left[\mathrm{PdL}_{4}^{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$
4-picoline , 3-picoline, 2-picoline $=\mathrm{L}^{1}$
4-aminopyridine, 3-aminopyridine, 2-aminopyridine $=L^{2}$
و2 ${ }^{2}$ ( $\left.\mathrm{BF}_{4}\right)\left[\mathrm{PdL}_{4}^{1}\right.$ حيث
4-picoline , 3-picoline $=L^{1}$
شخصت المعقدات المحضرة بالطرائق الطيفية [الشعة تحت الحمراء، الاشعة المرئبة - فوق البنفسية ، مطبافية النذرية ] وبالتحليل الكمي الدقيق للعناصر C.H.N والتوصبلية المولارية. من النتائج المحصول عليها فأن الثكل الفراغي المقترح لجميع المعقدات هو المربع المسنوي .

[^0]
## AJPS, 2008, Vol. 5, No. 1

## Introduction

A large number of pyridine derivatives and their complexes have been synthesis and developed such (bipy), (phen) ${ }^{[1,2]}$. The complexes of some transition metals with pyridine derivatives were reported for having biological activity and used as drugs in the medical applications ${ }^{[3]}$. Recently, the square planar complexes of Pd (II) with ligands contain nitrogen donor atoms were prepared such as complex of pd (II) with phosphine and DMF which are uses as catalyst for reduction $\mathrm{co}_{2}$ to $\mathrm{co}^{[4-10]}$. Great attention was given to synthesis the complex [pd (en) $\mathrm{Cl}(\mathrm{py})]^{+}$which has a capability of balking the division of cancer tumours ${ }^{[11]}$. This paper reports the synthesis and characterisation of some complexes of pd (II) with 2-picoline, 3-picoline, 4-picoline, 2-aminopyridine, 3aminopyridine, 4 -aminopyridine and the geometry structure was determined for this complexes.

## Experimental Methods

Reagents were purchased from fluka \& Redial-Dehengc co.I.R spectra were recorded as KBr or CsI discs using perkin-Elmer 1330 Infrared Spectrophotometer and Fourier Transform Infrared Spectrophotometer Shimadzu 24FT-I.R8300. Electronic spectra of the prepared complexes were measured in the region (200-1100) nm for $10^{-3} \mathrm{M}$ solutions in DMF at $25^{\circ} \mathrm{C}$ using shimadzu-U.V-160 A Ultra violet Visible - Spectrophotometer with $1.000 \pm 0.001 \mathrm{~cm}$ matched quartz cell. Elemental microanlysis (C.H.N) were performed by using perkin-Elmer 24B Elemental Analysis. While metal contents of the complexes were determined by Atomic Absorption (A.A) Technique using Japan A.A-670 Shimadzu. Electrical conductivity measurements of the complexes were recorded at $25^{\circ} \mathrm{C}$ for $10^{-3} \mathrm{M}$ solutions of the samples in DMF using pw9527 Digital conductivity meter (Philips).
Melting points were recorded by using Stuart melting point apparatus

## Synthesis of trans- $\left[\mathbf{P d C l}_{2} \mathbf{L}_{2}{ }_{2}\right]$ :

In (50) ml round bottom flask $(0.2 \mathrm{~g}, 1.13 \mathrm{mmol})$ of $\mathrm{PdCl}_{2}$ was dissolved in (5) ml methanol. A solution $(0.132 \mathrm{~g}, 62.26 \mathrm{mmol})$ of NaCl in (2) ml distilled water was added to the above solution.The mixture was allowed to reflux until the reddish brown solution formed, added to it $(0.22 \mathrm{ml}, 2.26 \mathrm{mmol})$ from the ligand $L^{1}$ (where $L^{1}=2$-picoline, 3-picoline.4-picoline) in (1) ml methanol. The reaction mixture was allowed to reflux for (2) hrs, the yellow precipitate formed which was filtered and washed with (4) ml methanol and (5) ml ether and dried to give the weight of product complex and yield \% (Table-1).

## Synthesis of $\left[\mathrm{PdL}_{4}{ }_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ :

In (50) ml round bottom flask ( $0.2 \mathrm{~g}, 0.55 \mathrm{mmol}$ ) of trans-[ $\left.\mathrm{PdCl}_{2} \mathrm{~L}_{2}{ }_{2}\right]$ (where: $\mathrm{L}^{1}=3$-picoline, 4-picoline) was dissolved in (5) ml methanol, solution of

## AJPS, 2008, Vol. 5, No. 1

( $0.26 \mathrm{ml}, 2.7 \mathrm{mmol}$ ) from ligand $\mathrm{L}^{1}\left(\mathrm{~L}^{1}=3\right.$-picoline, 4-picoline) in (2) ml methanol was added to the above solution. The reaction was allowed to reflux until the solid material solved and yellow colour solution formed. The mixture allowed to cool at room temperature, filtered and added to it $(0.12 \mathrm{~g}, 1.1 \mathrm{mmol})$ $\mathrm{NaBF}_{4}$, the mixture allowed to reflux (30) min. The solution was concentrated to (3) ml by distillation under reduced pressure (vacuum), cooling at room temperature and added to it (5) ml methanol, (7) ml ether, the yellow precipitate formed, which was cooled it to $\left(-5^{\circ} \mathrm{C}\right)$ for (1) hr, filtered and washed with (4) ml methanol, (8) ml ether to give the weight of product complex and yield \%(Table-1).

## Synthesis of trans -[ $\left.\mathrm{PdCl}_{2} \mathbf{L}^{2}{ }_{2}\right]$ :

The method used to prepare trans- $\left[\mathrm{PdCl}_{2} \mathrm{~L}^{2}{ }_{2}\right]$ (where: $\mathrm{L}^{2}=2-$ aminopyridine, 3- aminopyridine, 4-aminopyridine) was analogous to the procedure given for the complex trans- $\left[\mathrm{PdCl}_{2} \mathrm{~L}^{1}{ }_{2}\right]$ but with $(0.22 \mathrm{~g}, 2.34 \mathrm{mmol})$ of the ligand $\mathrm{L}^{2}$ instead of 2-picoline, 3-picoline, 4-picoline. The quantities of the other reagents were adjusted accordingly and an identical work-up procedure gave yellow precipitate, which was weighted to give the yield $\%$ of the product complex (Table-1).

## Synthesis of $\left[\mathrm{PdL}_{4}^{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ :

A similar procedure to that described for preparation complexes $\left[\mathrm{PdL}_{4}^{1}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (where: $\mathrm{L}^{1}=3$-picoline,4-picoline) was used to prepare the complexes $\left[\mathrm{PdL}_{4}^{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (where $\mathrm{L}^{2}=2$-aminopyridine , 3-aminopyridine, 4aminopyridine ) but with $(0.2 \mathrm{~g}, 0.55 \mathrm{mmol})$ from the complex tarns- $\left.-\mathrm{PdCl}_{2} \mathrm{~L}_{2}^{2}\right]$ inplace of trans-[ $\left.\mathrm{PdCl}_{2} \mathrm{~L}_{2}{ }_{2}\right]$ and used $(0.26 \mathrm{~g}, 2.8 \mathrm{mmol})$ from the ligand $\mathrm{L}^{2}$ inplace of the ligand $\mathrm{L}^{1}$ to give yellow precipitate which was filtered and washed with (4) ml methanol ,(6) ml ether and dried to give the weight of product complex and yield \% (Table-1) .

## Results and Discussion

The prepared complexes are stable in solution (Table-3), the analytical and physical data (Table-1) and spectral data (Table-2 and 3) are computable with the suggested structure (Fig.1). All complexes dissolve in DMF solvent.

## I.R spectra:

The I.R spectra for all prepared complexes gave different spectra when it is comparision with I.R spectra of free ligand $\mathrm{L}^{1}, \mathrm{~L}^{2}$ (Table 2). In general the I.R spectra of all complexes revealed two bands, the first at the range (1600$1628) \mathrm{cm}^{-1}$ and the second at the range $(1480-1510) \mathrm{cm}^{-1}$ due to stretching frequancy of aromatic ring groups $v(C==N), v(C==C)$ respectively, which are shifted to high frequency when it comparison with spectra of free ligands ${ }^{[12]}$, these shifting of two bands indicate the coordination between nitrogen atom of

## AJPS, 2008, Vol. 5, No. 1

the ring and metal ion $\mathrm{pd}(\mathrm{II}){ }^{[13,14]}$. The I.R spectra of complexes $\left[\mathrm{PdCl}_{2} \mathrm{~L}^{1}{ }_{2}\right]$ (Fig.2) and $\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}{ }_{2}\right]$ exhibit two new bands, the first at the range (480-550) $\mathrm{cm}^{-1}$, the second at the range $(334-350) \mathrm{cm}^{-1}$ assigned to the stretching frequency of trans-v $(\mathrm{Pd}---\mathrm{N})$ and trans-v $(\mathrm{Pd}---\mathrm{Cl})$ respectively ${ }^{[15,16]}$. The I.R spectra of the complexes $\left[\mathrm{PdL}_{4}^{1}\right]\left(\mathrm{BF}_{4}\right)_{2}$ and $\left[\mathrm{PdL}_{4}^{2}\right]\left(\mathrm{BF}_{4}\right)$ (Fig.3) show two new bands at the range (1038-1070) $\mathrm{cm}^{-1}$ due to stretching frequency of $\mathrm{BF}_{4}{ }^{-}$group ${ }^{[17]}$, and a band at the range $(513-550) \mathrm{cm}^{-1}$ due to stretching frequency $v(\mathrm{Pd}---\mathrm{N}){ }^{[4,16]}$. Moreover the absence of a band at range (334-350) $\mathrm{cm}^{-1}$ which due to $v(\mathrm{Pd}---$ $\mathrm{Cl})$ in the I.R spectra of the complexes $\left[\mathrm{Pd} \mathrm{L}_{4}^{1}\right]\left(\mathrm{BF}_{4}\right)_{2}$ and $\left[\mathrm{PdL}_{4}^{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ indicate the uncoordinated of Cl with the $\mathrm{Pd}(\mathrm{II})$ in these complexes.

## Electronic spectra:

The electronic spectral data of the free ligands $L^{1}$ and $L^{2}$ and their complexes are summarized in table-3. The u.v-vis spectra of the free ligand in DMF solvent appeared absorption peak at (275) nm due to overlap of electronic transition $\left(\pi \longrightarrow \pi^{*}\right)$ and $\left(\mathrm{n} \longrightarrow \pi^{*}\right)^{[18]}$. The electronic spectra of the complexes in general formula $\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}^{1}\right]$ (Fig.4), $\left[\mathrm{PdL}_{4}^{1}\right]\left(\mathrm{BF}_{4}\right)_{2}$ and $\left[\mathrm{PdL}^{2}{ }_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ displayed three absorption peaks, the first peak at the range (275-290) nm assigned to ligand field, which were shifted to high frequency when it comparison with spectra of the free ligands $L^{1}$ and $L^{2}{ }^{[19]}$, the second peak at the range (301$360) \mathrm{nm}$ and the third peak at the range(391-783)nm are attributed to (d-d) electronic transition type $\left({ }^{1} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{1} \mathrm{~B}_{1} \mathrm{~g}\right),\left({ }^{1} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{1} \mathrm{~A}_{2} \mathrm{~g}\right)$ respectively ${ }^{[20,21]}$, while the electronic spectra of complexes in general formula $\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}^{2}\right]$ show two peaks, the first peak at the range(278-291)nm and the second peak at the range (305-365) nm, are attributed to the ligand field ${ }^{[19]}$ and (d-d) electronic transition type $\left({ }^{1} \mathrm{~A}_{1} \mathrm{~g} \rightarrow \mathrm{~B}_{1} \mathrm{~g}\right){ }^{[21]}$ respectively.
The peaks in the electronic spectra of all complexes which assigned to (d-d) electronic transition $\left({ }^{1} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{1} \mathrm{~B}_{1} \mathrm{~g}\right),\left({ }^{1} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{1} \mathrm{~A}_{2} \mathrm{~g}\right)$ give a good evidence for square planar geometry about $\operatorname{pd}(\mathrm{II}){ }^{[22,23]}$.

## Molar Conductance:

The molar conductance values of the complexes in DMF solvent in $10^{-3} \mathrm{M}$ at $298^{\circ} \mathrm{K}$ (Table-3) indicted that the complexes trans- $\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}{ }_{2}\right]$ and trans$\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}^{2}\right]$ are neutral, while the complexes $\left[\mathrm{PdL}_{4}^{1}\right]\left(\mathrm{BF}_{4}\right)_{2},\left[\mathrm{PdL}_{4}^{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ are electrolyte with $2: 1{ }^{[24,25]}$.

## Atomic Absorption:

The atomic absorption measurements (Table-1) for all complexes gave approximated values for theoretical values.

In conclusion, our investigation this suggest that the ligands $L^{1}$ and $L^{2}$ coordinate with pd (II) forming square planar geometry (Fig-1).

## AJPS, 2008, Vol. 5, No. 1

## References

1. Cotton, F.A.; Wilkinson, G.; "Advanced Inorganic Chemistry" $4^{\text {th }}$ ED.; J.Wiley and Sons, New York, 129, (1980).
2. Shriver, D.F.; Atkins, P.W, and Langfroid; "Inorganic Chemistry", Oxford University press, 506, (1990).
3. Chang, R.; "Chemistry" $6^{\text {th }}$ WcB. McGraw-Hill, New York, 889, (1998).
4. Abed, J. A.; Vincent, J.; de Bodadilla, R. F.; Jones, P.G. and de Arelland, M. C. R.; Organometallics, 15, 24, (1996).
5. Rink, B.; Vicente, J.; Abed, J.A; Hernandez,F.S and de Arellano ,M.C.R.; Organometallics ,16,526,(1997).
6. Vicente,J.; Abed, J.A.; Chicote, M,T.; Abrisqueta, M. D.; lorca, J.A. and de Arellano,M.C.R.; Organometallics,17, 1964, (1998).
7. Arcas, A.; Vicente, J.; Bautista, D. and de Arellano, M.C.R.; Organometallics, 17, 4544, (1998).
8. Constable, E.C .and Holmes, J.M.; Inorganic Chemica Acta, 126, 137, (1987).
9. Jones, P. G.; Vicente, J.; Abed, J. A.; Fortsch, W. and Fischer, A.k; Organometallics, 20, 2704, (2001).
10. Herring, A.M; Steffey, B.D.; Miedaner, A.; Wander, S.A. and Dubois, D.L; Inorg. Chem, 34, 1100, (1995).
11. Zhao, G.H.; Lin, H.K.; Yu, P.; Sun, H.w; Zhu, S.R.; Su, X.C. and Chen, Y.T. J. Inorg. Biochem., 73, 145, (1999).
12. MacBeath, C.; Vicente, J.; Cheat, M.T.; Baize, J.F. and Bautista, D.; Organometallics, 18, 2677, (1999).
13. Vicente, J.; Chicote, M.T.; Huertas, S.; Bautista, D.; Jones, P.G. and Fiseher, A.K.; Inorg Chem.; 40, 2015, (2001).
14. Vicente, J.; Arcas, A.; Blasco, M.A.; Lozano, J. and de Arellano, M.C.R.; Organometallice, 17, 5374, (1998).
15. Vicente, J.; Chicote, M.T; Rubio, C. and de Arellano, M.C.R.; Organometallics. 19, 2750, (1999).
16. Prabhakaran, C.P. and Pafel, C.C. J. Inorg . Nucl. Chem., 31, 3319, (1969).
17. Socrates, G. "Infrared Characteristic Group Frequencies" 1 st Ed J. Wilay and Sons, New York, 87, (1980).
18. Al-Mukhtar, S.E.; Mustafa, H.A.;" Inorganic and Coordination Chemistry" Mosul university, Iraq, 621, (1988).
19. Farrell, N. and Carneiro, T.M.G.; Inorganica Chimica Acta , 126, 137, (1987).
20. Lever, A.B.P.; "Inorganic Electronic Spectroscopy", Elsevier publishing company, New York, 278, (1968).
21. Vanquickenbrone, L.G. and Ceulemans, A.; Inorg.Chem., 20, 760, (1981).
22. Jorgensen, C.K.; Acta. Chem. Sacnd.; 1362, (1955).
23. Holmes, O.G. and Meclure, D.S.; J.Chem.Phys. 26, 1686, (1957).

AJPS, 2008, Vol. 5, No. 1
24. Quaglrine, J.V.; Fujita, J.; Franz, G.; philips, D.J.; Walmsliy, J.A. and Tyree, S.Y.; J. Am.Chem. Soc., 81, 3770, (1961).
25. Preti, C. and Tosi, G.; J. Inorg. Nucl. Chem., 36, 3725, (1974).

## AJPS, 2008, Vol. 5, No. 1

Table 2: I.R spectral data of the ligands and its complexes ( $\mathrm{cm}^{-1}$ )

| Compounds | $\begin{aligned} & \hline v(\mathbf{C}--\mathbf{H}) \\ & \text { Ar.,AI. } \end{aligned}$ | Ring vibration $v(\mathbf{C}---\mathbf{N}), v(\mathbf{C}---\mathbf{C})$ | $\delta$ inplane <br> (C---H) | $v$ ( Pd---N) |
| :---: | :---: | :---: | :---: | :---: |
| 2-pic | 3070,2933 | 1596,1470 | 1052 | ------ |
| trans-[ $\left.\left.\mathrm{PdCl}_{2} \mathbf{( 2 - p i c}\right)_{2}\right]$ | 3050,2945 | 1602,1490 | 1100 | 480 |
| 3-pic | 3050,2941 | 1590,1481 | 1031 | ------- |
| trans-[ $\left.\mathrm{PdCl}_{2}(\mathbf{3 - p i c})_{2}\right]$ | 3052,2951 | 1600, 1480 | 1100 | 520 |
| $\left[\mathbf{P d}(3-\mathrm{pic})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | 3050,2928 | 1600, 1490 | 1170 | 520 |
| 4-pic | 3075,2930 | 1603,1493 | 1040 | ------ |
| trans-[ $\left.\mathrm{PdCl}_{2}(\mathbf{4}-\mathrm{pic})_{2}\right]$ | 3070,2924 | 1618,1502 | 1070 | 507 |
| $\left[\mathbf{P d}(4-\mathrm{pic})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | 3070, ,2923 | 1622,1510 | 1100 | 513 |
| Compounds | $\begin{aligned} & \hline v(\mathrm{~N}--\mathrm{H}) \\ & \text { as.,s. } \end{aligned}$ | Ring vidration $v(\mathbf{C}---N), v(\mathbf{C}---\mathbf{C})$ | $\delta$ inplane $(\mathrm{N}--\mathrm{H})$ | v (Pd---N) |
| 2-ampy | 3455, 3335 | 1600,1492 | 1625 | ------- |
| trans-[ $\left.\mathrm{PdCl}_{2}(2-\mathrm{ampy})_{2}\right]$ | 3460, 3340 | 1605,1510 | 1550 | 490 |
| [ $\left.\mathbf{P d}(\mathbf{2 - a m p y})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | 3451,3395 | 1632,1499 | 1600 | 527 |
| 3-ampy | 3350,3205 | 1590, 1481 | 1620 | ------- |
| trans $-\left[\mathrm{PdCl}_{2}(3-\mathrm{ampy})_{2}\right]$ | 3410,3205 | 1620,1485 | 1580 | 550 |
| [ $\left.\mathrm{Pd}(3-\mathrm{ampy})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | 3400, 3300 | 1628,1505 | 1555 | 550 |
| 4-ampy | 3444,3330 | 1602,1493 | 1630 | --------- |
| trans $\left[\mathrm{PdCl}_{2}(4-\mathrm{ampy})_{2}\right]$ | 3442,3223 | 1620,1510 | 1556 | 520 |
| $\left[\mathbf{P d}(4-\mathrm{ampy})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | 3440, 3320 | 1620,1500 | 1585 | 540 |

Ar =Aromatic $\quad \mathrm{AI}=$ Aliphatic $\quad$ as. $=$ Asymetric $\quad$ s. $=$ symertric $\quad$ pic=picolint

AJPS, 2008, Vol. 5, No. 1

Table 3: Electronic spectral data and conductance measurments of the ligands and its complexes in DMF solvent.

| Compounds | $\lambda(\mathrm{nm})$ | $v^{-}\left(\mathrm{cm}^{-1}\right)$ | $\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \varepsilon \max ^{-1} \cdot \mathrm{~cm}^{-1} \\ \hline \end{array}$ | M.C. <br> Ohm ${ }^{-1} . \mathrm{cm}^{2} . \mathrm{mol}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2-pic | 275 | 36363 | 2411 | ----- |
| trans-[ $\left.\mathrm{PdCl}_{2}(2-\mathrm{pic})_{2}\right]$ | $\begin{aligned} & 281 \\ & 314 \\ & 391 \end{aligned}$ | $\begin{aligned} & 35587 \\ & 31874 \\ & 25575 \end{aligned}$ | $\begin{aligned} & \hline 1660 \\ & \mathbf{9 8 2} \\ & \mathbf{3 3 1} \end{aligned}$ | 18.9 |
| 3-pic | 275 | 36363 | 1975 |  |
| trans-[ $\left.\mathrm{PdCl}_{2}(\mathbf{3 - p i c})_{2}\right]$ | $\begin{aligned} & 284 \\ & 317 \\ & 394 \end{aligned}$ | $\begin{aligned} & 35211 \\ & 31545 \\ & 25380 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 2197 \\ 1130 \\ 932 \\ \hline \end{array}$ | 20 |
| $\left[\mathrm{Pd}(3-\mathrm{pic})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | $\begin{aligned} & 278 \\ & 330 \\ & 725 \end{aligned}$ | $\begin{array}{\|l\|} \hline 35971 \\ \mathbf{3 0 3 0 3} \\ \mathbf{1 3 7 9 3} \\ \hline \end{array}$ | $\begin{aligned} & \hline 1353 \\ & 250 \\ & 2 \end{aligned}$ | 133 |
| 4-pic | 275 | 36363 | 2354 |  |
| trans-[ $\mathrm{PdCl}_{2}\left(4\right.$-pic) $\left.{ }_{2}\right]$ | $\begin{aligned} & 278 \\ & 310 \\ & 392 \end{aligned}$ | $\begin{aligned} & 35971 \\ & 32258 \\ & 25510 \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathbf{1 2 3 3} \\ \mathbf{3 0 0} \\ \mathbf{3 2 4} \\ \hline \end{array}$ | 17 |
| $\left[\mathrm{pd}(4-\mathrm{pic})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | $\begin{aligned} & 279 \\ & 360 \\ & 752 \end{aligned}$ | $\begin{aligned} & 33670 \\ & 27777 \\ & 13297 \end{aligned}$ | $\begin{aligned} & 1810 \\ & 790 \\ & 35 \end{aligned}$ | 143 |
| 2-ampy | 275 | 36363 | 2043 |  |
| trans-[ $\left.\mathrm{PdCl}_{2}(2-\mathrm{ampy})_{2}\right]$ | $\begin{aligned} & 278 \\ & 305 \\ & \hline \end{aligned}$ | $\begin{aligned} & 35971 \\ & 32786 \\ & \hline \end{aligned}$ | $\begin{array}{r} 1679 \\ 1032 \\ \hline \end{array}$ | 15.5 |
| $\left[\mathbf{P d}(\mathbf{2 - a m p y})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | $\begin{aligned} & 279 \\ & 325 \\ & 735 \\ & \hline \end{aligned}$ | $\begin{aligned} & 33670 \\ & 30769 \\ & 13605 \end{aligned}$ | $\begin{aligned} & \hline 1580 \\ & 750 \\ & 28 \\ & \hline \end{aligned}$ | 150 |
| 3-ampy | 275 | 36363 | 1553 |  |
| trans--[PdCl $\left.\left.\mathbf{2}^{(3-a m p y}\right)_{2}\right]$ | $\begin{aligned} & \hline 278 \\ & 317 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 35971 \\ \hline \mathbf{3 1 5 4 5} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 923 \\ \mathbf{1 1 8 6} \\ \hline \end{array}$ | 11.6 |
| $\left[\mathbf{P d}(3-\mathrm{ampy})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | $\begin{aligned} & 275 \\ & 301 \\ & 702 \\ & \hline \end{aligned}$ | $\begin{aligned} & 36363 \\ & 33222 \\ & \mathbf{1 4 2 4 5} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 1631 \\ 2466 \\ 7 \\ \hline \end{array}$ | 160 |
| 4-ampy | 275 | 36363 | 2340 |  |
| trans-[ $\left.\mathrm{PdCl}_{\mathbf{2}}(\mathbf{4}-\mathrm{ampy})_{2}\right]$ | $\begin{aligned} & 291 \\ & 365 \end{aligned}$ | $\begin{aligned} & \hline 34364 \\ & 27397 \end{aligned}$ | $\begin{array}{\|l\|} \hline 936 \\ 279 \end{array}$ | 21.7 |
| $\left[\mathbf{P d}(4-\mathrm{ampy})_{4}\right]\left(\mathrm{BF}_{4}\right)_{4}$ | $\begin{aligned} & 290 \\ & 360 \\ & 783 \\ & \hline \end{aligned}$ | $\begin{aligned} & 34482 \\ & 27777 \\ & \mathbf{1 2 7 7 1} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 2356 \\ 750 \\ 71 \\ \hline \end{array}$ | 135 |

[^1]AJPS, 2008, Vol. 5, No. 1

Table 1: Analytical and physical data of the complexes:

| Complexes * | colour | M.Wt | Dec. ${ }^{\text {a }}$ c | Yield\% | Fou |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | C |
| trans -[PdCl $\left.\left.{ }_{2}(2-\mathrm{pic})_{2}\right)\right]$ | Pale yellow | 363.57 | 325 | 93 | $\begin{aligned} & \hline 39.4 \\ & (39.6) \end{aligned}$ |
| trans $-\left[\mathrm{PdCl}_{2}(3-\mathrm{pic})_{2}\right]$ | Greensh yellow | 363.57 | 320 | 97 | $\begin{array}{\|l\|} \hline 38.4 \\ (39.6) \\ \hline \end{array}$ |
| $\left[\mathrm{Pd}(3-\mathrm{pic})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | Yellow | 652.52 | 265 | 84 | $\begin{array}{\|l\|} \hline 44.0 \\ (44.1) \end{array}$ |
| trans $-\left[\mathrm{PdCl}_{2}(\mathbf{4 - p i c})_{2}\right]$ | Pale yellow | 363.57 | 330 | 97 | $\begin{aligned} & \hline 39.4 \\ & (39.6) \end{aligned}$ |
| $\left[\mathrm{Pd}(4-\mathrm{pic})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ | Pale yellow | 652.52 | 265 | 81 | $\begin{array}{\|l\|} \hline 43.87 \\ (44.1) \\ \hline \end{array}$ |
| trans -[pdCl $\left.\left.{ }_{2}(2-\mathrm{ampy})_{2}\right)\right]$ | Pale-yellow | 365.55 | 336 | 85 | $\begin{aligned} & \hline 30.9 \\ & (32.8) \end{aligned}$ |
| $\left[\mathrm{Pd}(\mathbf{2}-\mathrm{ampy})_{4}\right]\left(\mathrm{BF}_{4}\right)_{\mathbf{2}}$ | Dark yellow | 656.48 | 280 | 72 | $\begin{array}{\|l\|} \hline 32.4 \\ (36.5) \end{array}$ |
| trans -[ $\left.\mathrm{PdCl}_{2}(3-\mathrm{ampy})_{2}\right]$ | Greensh yellow | 365.55 | 335 | 93 | $\begin{aligned} & \hline 33.02 \\ & (32.8) \end{aligned}$ |
| $\left[\mathrm{Pd}(3-\mathrm{ampy})_{4}\right]\left(\mathrm{BF}_{4}\right)_{\mathbf{2}}$ | Dark yellow | 656.48 | 270 | 75 | $\begin{aligned} & \hline 35.4 \\ & (36.5) \\ & \hline \end{aligned}$ |
| trans -[ $\left.\mathrm{PdCl}_{2}(4-\mathrm{ampy})_{2}\right]$ | Pale yellow | 365.55 | 340 | 93 | $\begin{aligned} & \hline 32.6 \\ & (32.8) \end{aligned}$ |
| $\left[\mathrm{Pd}(4-\mathrm{ampy})_{4}\right]\left(\mathrm{BF}_{4}\right)_{\mathbf{2}}$ | Dark yellow | 656.48 | 275 | 87 | $\begin{aligned} & 35.8 \\ & (36.5) \end{aligned}$ |

- pic $=$ picoline ampy $=$ aminopyridine

AJPS, 2008, Vol. 5, No. 1


Fig. (4) Electronic spectrum of complex trans $-\left[\mathrm{PdCl}_{2}(4-\mathrm{Pic})_{2}\right]$

AJPS, 2008, Vol. 5, No. 1


Fig 1: The suggested structure for the complexes
a - trans-[Pd Cl $\left.\mathbf{l}_{2}(4-\mathrm{pic})_{2}\right]$
b $-\left[\operatorname{Pd}(4-\mathrm{ampy})_{4}\right]^{+2}$
pic $=$ picoline
ampy = aminopyridine

AJPS, 2008, Vol. 5, No. 1


Fig 2: I.R spectrum of trans $-\left[\mathrm{PdCl}_{2}(4-\mathrm{Pic})_{2}\right]$


Fig 3: I.R spectrum of complex $\left[\operatorname{Pd}(2-a m p y)_{4}\right]^{+2}$


[^0]:    ABSTRACT
    Complexes of palladium (II) with pyridine derivatives in general formula: trans- $\left[\mathrm{PdCl}_{2} \mathrm{~L}^{1}{ }_{2}\right]$, (where: $\mathrm{L}^{1}=2$ - picoline, 3- picoline, 4- picoline); [pd $\left.\mathrm{L}^{1}{ }_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$, $\left(\right.$ Where: $\mathrm{L}^{1}=3$-picoline, 4-picoline); trans- $\left[\mathrm{PdCl}_{2} \mathrm{~L}^{2}{ }_{2}\right]$ and [pd $\left.\mathrm{L}^{2}{ }_{4}\right]$ $\left(\mathrm{BF}_{4}\right)_{2}$, (Where: $\mathrm{L}^{2}=2$-aminopyridine, 3 - aminopyridine, 4 -aminopyridine) were prepared.

    All componnds have been characterised by spectroscopic methods [I.R, U.V-Vis, Atomic Absorption], Microanalysis (C. H .N) a long with conductivity measurements.

    From the above data the proposed molecular structure for all prepared complexes are square planar geometries about pd (II).

[^1]:    * M.C = Molar conductance

