Synthesis and Characterization of Palladium (II) Complexes With Some Pyridine Derivatives

M. J. Al-Jeboori^{*}, S. M. Lateef^{*}, A. R. A. AL-Shuaibi^{**} *Department of Chemistry, Collage of Education, Ibn Al-Haitham University of Baghdad **Department of Chemistry, collage of Sciences, Aden University

تحضير ودراسة معقدات البلاديوم (II) مع بعض مشتقات البريدين

الخلاصة

تضمن هذا البحث تحضير معقدات جديدة للبلاديوم (II) مع مشتقات البريدين ذات الصيغة العامة:

:حيث trans- [PdCl₂L¹₂], trans - [PdCl₂L²₂], [PdL²₄](BF₄)₂

4-picoline , 3-picoline , 2-picoline = L^1

4-aminopyridine , 3-aminopyridine , 2-aminopyridine $=L^2$

و ₂ [PdL¹₄] حيث:

4-picoline , 3-picoline = L^1

شخصت المعقدات المحضرة بالطرائق الطيفية [الاشعة تحت الحمراء، الاشعة المرئية – فوق البنفسجية ، مطيافية التذرية] وبالتحليل الكمي الدقيق للعناصر C.H.N والتوصيلية المولارية. من النتائج المحصول عليها فأن الشكل الفراغي المقترح لجميع المعقدات هو المربع المستوي .

ABSTRACT

Complexes of palladium (II) with pyridine derivatives in general formula: *trans*- [PdCl₂L¹₂], (where: L¹ = 2- picoline, 3- picoline, 4- picoline); [pd L¹₄](BF₄) ₂, (Where: L¹=3-picoline, 4-picoline); *trans*- [PdCl₂L²₂] and [pd L²₄] (BF₄) ₂, (Where: L² = 2-aminopyridine, 3 - aminopyridine, 4 -aminopyridine) were prepared.

All componeds have been characterised by spectroscopic methods [I.R, U.V-Vis, Atomic Absorption], Microanalysis (C. H .N) a long with conductivity measurements.

From the above data the proposed molecular structure for all prepared complexes are square planar geometries about pd (II).

Introduction

A large number of pyridine derivatives and their complexes have been synthesis and developed such (bipy), (phen) ^[1,2]. The complexes of some transition metals with pyridine derivatives were reported for having biological activity and used as drugs in the medical applications ^[3]. Recently, the square planar complexes of Pd (II) with ligands contain nitrogen donor atoms were prepared such as complex of pd (II) with phosphine and DMF which are uses as catalyst for reduction co_2 to co ^[4-10]. Great attention was given to synthesis the complex [pd (en) Cl (py)]⁺ which has a capability of balking the division of cancer tumours ^[11]. This paper reports the synthesis and characterisation of some complexes of pd (II) with 2-picoline, 3-picoline, 4-picoline, 2-aminopyridine, 3-aminopyridine, 4-aminopyridine and the geometry structure was determined for this complexes.

Experimental Methods

Reagents were purchased from fluka & Redial-Dehengc co.I.R spectra were recorded as KBr or CsI discs using perkin-Elmer 1330 Infrared Spectrophotometer and Fourier Transform Infrared Spectrophotometer Shimadzu 24FT-I.R8300. Electronic spectra of the prepared complexes were measured in the region (200- 1100) nm for 10⁻³ M solutions in DMF at 25°C using shimadzu-U.V-160 A Ultra violet Visible - Spectrophotometer with 1.000±0.001 cm matched quartz cell. Elemental microanlysis (C.H.N) were performed by using perkin-Elmer 24B Elemental Analysis. While metal contents of the complexes were determined by Atomic Absorption (A.A) Japan A.A-670 Shimadzu. Electrical conductivity Technique using measurements of the complexes were recorded at 25°C for 10⁻³ M solutions of the samples in DMF using pw9527 Digital conductivity meter (Philips). Melting points were recorded by using Stuart melting point apparatus

Synthesis of *trans*-[PdCl₂L¹₂]:

In (50) ml round bottom flask (0.2g, 1.13 mmol) of $PdCl_2$ was dissolved in (5) ml methanol. A solution (0.132 g, 62.26 mmol) of NaCl in (2) ml distilled water was added to the above solution .The mixture was allowed to reflux until the reddish brown solution formed, added to it (0.22 ml, 2.26 mmol) from the ligand L¹ (where L¹=2-picoline, 3-picoline.4-picoline) in (1) ml methanol. The reaction mixture was allowed to reflux for (2) hrs, the yellow precipitate formed which was filtered and washed with (4) ml methanol and (5) ml ether and dried to give the weight of product complex and yield % (Table-1).

Synthesis of [PdL¹₄](BF₄)₂:

In (50) ml round bottom flask (0.2 g, 0.55 mmol) of *trans*-[PdCl₂L¹₂] (where: L^1 = 3-picoline, 4-picoline) was dissolved in (5) ml methanol, solution of

(0.26 ml, 2.7 mmol) from ligand L^1 (L^1 =3-picoline, 4-picoline) in (2) ml methanol was added to the above solution .The reaction was allowed to reflux until the solid material solved and yellow colour solution formed. The mixture allowed to cool at room temperature, filtered and added to it (0.12g, 1.1mmol) NaBF₄, the mixture allowed to reflux (30) min. The solution was concentrated to (3) ml by distillation under reduced pressure (vacuum), cooling at room temperature and added to it (5) ml methanol, (7) ml ether, the yellow precipitate formed, which was cooled it to (- 5°C) for (1) hr, filtered and washed with (4) ml methanol, (8) ml ether to give the weight of product complex and yield %(Table-1).

Synthesis of *trans* -[PdCl₂L²₂]:

The method used to prepare *trans*-[PdCl₂L²₂] (where: $L^2 = 2$ aminopyridine, 3- aminopyridine, 4-aminopyridine) was analogous to the procedure given for the complex *trans*-[PdCl₂L¹₂] but with (0.22 g, 2.34 mmol) of the ligand L² instead of 2-picoline, 3-picoline, 4-picoline. The quantities of the other reagents were adjusted accordingly and an identical work-up procedure gave yellow precipitate, which was weighted to give the yield % of the product complex (Table-1).

Synthesis of [PdL²₄](BF₄)₂:

A similar procedure to that described for preparation complexes $[PdL_4^1](BF_4)_2$ (where:L¹=3-picoline,4-picoline) was used to prepare the complexes $[PdL_4^2](BF_4)_2$ (where L²=2-aminopyridine , 3-aminopyridine, 4-aminopyridine) but with (0.2g, 0.55 mmol) from the complex *tarns*- $[PdCl_2L_2^2]$ inplace of *trans*- $[PdCl_2L_2^1]$ and used (0.26g,2.8mmol) from the ligand L² inplace of the ligand L¹ to give yellow precipitate which was filtered and washed with (4)ml methanol ,(6)ml ether and dried to give the weight of product complex and yield % (Table-1).

Results and Discussion

The prepared complexes are stable in solution (Table-3), the analytical and physical data (Table-1) and spectral data (Table-2 and 3) are computable with the suggested structure (Fig.1). All complexes dissolve in DMF solvent.

I.R spectra:

The I.R spectra for all prepared complexes gave different spectra when it is comparision with I.R spectra of free ligand L¹, L² (Table 2). In general the I.R spectra of all complexes revealed two bands, the first at the range (1600-1628)cm⁻¹ and the second at the range (1480-1510) cm⁻¹ due to stretching frequancy of aromatic ring groups v(C==N), v(C==C) respectively, which are shifted to high frequency when it comparison with spectra of free ligands ^[12], these shifting of two bands indicate the coordination between nitrogen atom of the ring and metal ion pd(II) ^[13,14]. The I.R spectra of complexes $[PdCl_2L_2^1]$ (Fig.2) and $[PdCl_2L_2^2]$ exhibit two new bands, the first at the range (480-550) cm⁻¹, the second at the range (334-350) cm⁻¹ assigned to the stretching frequency of trans- υ (Pd---N) and trans- υ (Pd---Cl) respectively ^[15,16]. The I.R spectra of the complexes $[PdL_4^1](BF_4)_2$ and $[PdL_4^2](BF_4)$ (Fig.3) show two new bands at the range (1038-1070) cm⁻¹ due to stretching frequency υ (Pd---N) ^[4,16]. Moreover the absence of a band at range (334 -350) cm⁻¹ which due to υ (Pd---Cl) in the I.R spectra of the complexes $[PdL_4^1](BF_4)_2$ and $[PdL_4^2](BF_4)_2$ a

Electronic spectra:

The electronic spectral data of the free ligands L^1 and L^2 and their complexes are summarized in table-3. The u.v-vis spectra of the free ligand in DMF solvent appeared absorption peak at (275) nm due to overlap of electronic transition $(\pi \rightarrow \pi^*)$ and $(n \rightarrow \pi^*)^{[18]}$. The electronic spectra of the complexes in general formula $[PdCl_2L^1_2]$ (Fig.4), $[PdL^1_4](BF_4)_2$ and $[PdL^2_4](BF_4)_2$ displayed three absorption peaks, the first peak at the range (275-290) nm assigned to ligand field , which were shifted to high frequency when it comparison with spectra of the free ligands L^1 and L^2 [^{19]}, the second peak at the range (301-360)nm and the third peak at the range(391-783)nm are attributed to (d-d) electronic transition type (${}^{1}A_{1}g \rightarrow {}^{1}B_{1}g$) , (${}^{1}A_{1}g \rightarrow {}^{1}A_{2}g$) respectively^[20,21], while the electronic spectra of complexes in general formula [PdCl_2L^2_2] show two peaks, the first peak at the range(278-291)nm and the second peak at the range (305-365) nm, are attributed to the ligand field ^[19] and (d-d) electronic transition type(${}^{1}A_{1}g \rightarrow {}^{1}B_{1}g$) ^[21] respectively.

The peaks in the electronic spectra of all complexes which assigned to (d-d) electronic transition (${}^{1}A_{1}g \rightarrow {}^{1}B_{1}g$), (${}^{1}A_{1}g \rightarrow {}^{1}A_{2}g$) give a good evidence for square planar geometry about pd(II) [22,23].

Molar Conductance:

The molar conductance values of the complexes in DMF solvent in 10^{-3} M at 298° K (Table-3) indicted that the complexes *trans*- [PdCl₂L¹₂] and *trans*- [PdCl₂L²₂] are neutral, while the complexes [PdL¹₄](BF₄)₂, [PdL²₄](BF₄)₂ are electrolyte with 2:1 ^[24,25].

Atomic Absorption:

The atomic absorption measurements (Table-1) for all complexes gave approximated values for theoretical values.

In conclusion, our investigation this suggest that the ligands L^1 and L^2 coordinate with pd (II) forming square planar geometry (Fig-1).

References

- 1. Cotton, F.A.; Wilkinson, G.; "Advanced Inorganic Chemistry" 4th ED.; J.Wiley and Sons, New York, 129, (1980).
- 2. Shriver, D.F.; Atkins, P.W, and Langfroid; "Inorganic Chemistry", Oxford University press, 506, (1990).
- 3. Chang, R.; "Chemistry" 6th WcB. McGraw-Hill, New York, 889, (1998).
- 4. Abed, J. A.; Vincent, J.; de Bodadilla, R. F.; Jones, P.G. and de Arelland, M. C. R.; Organometallics, 15, 24, (1996).
- 5. Rink, B.; Vicente, J.; Abed, J.A; Hernandez, F.S and de Arellano , M.C.R.; Organometallics , 16, 526, (1997).
- 6. Vicente, J.; Abed, J.A.; Chicote, M,T.; Abrisqueta, M. D.; lorca, J.A. and de Arellano, M.C.R.; Organometallics, 17, 1964, (1998).
- 7. Arcas, A.; Vicente, J.; Bautista, D. and de Arellano, M.C.R.; Organometallics, 17, 4544, (1998).
- 8. Constable, E.C and Holmes, J.M.; Inorganic Chemica Acta, 126, 137, (1987).
- 9. Jones, P. G.; Vicente, J.; Abed, J. A.; Fortsch, W. and Fischer, A.k; Organometallics, 20, 2704, (2001).
- 10. Herring, A.M; Steffey, B.D.; Miedaner, A.; Wander, S.A. and Dubois, D.L; Inorg. Chem, 34, 1100, (1995).
- 11. Zhao, G.H.; Lin, H.K.; Yu, P.; Sun, H.w; Zhu, S.R.; Su, X.C. and Chen, Y.T. J. Inorg. Biochem., 73, 145, (1999).
- 12. MacBeath, C.; Vicente, J.; Cheat, M.T.; Baize, J.F. and Bautista, D.; Organometallics, 18, 2677, (1999).
- 13. Vicente, J.; Chicote, M.T.; Huertas, S.; Bautista, D.; Jones, P.G. and Fiseher, A.K.; Inorg Chem.; 40, 2015, (2001).
- 14. Vicente, J.; Arcas, A.; Blasco, M.A.; Lozano, J. and de Arellano, M.C.R.; Organometallice, 17, 5374, (1998).
- 15. Vicente, J.; Chicote, M.T; Rubio, C. and de Arellano, M.C.R.; Organometallics. 19, 2750, (1999).
- 16. Prabhakaran, C.P. and Pafel, C.C. J. Inorg . Nucl. Chem., 31, 3319, (1969).
- 17. Socrates, G. "Infrared Characteristic Group Frequencies" 1stEd J. Wilay and Sons, New York, 87, (1980).
- 18. Al-Mukhtar, S.E.; Mustafa, H.A.;" Inorganic and Coordination Chemistry" Mosul university, Iraq, 621, (1988).
- 19. Farrell, N. and Carneiro, T.M.G.; Inorganica Chimica Acta , 126, 137, (1987).
- 20. Lever, A.B.P.; "Inorganic Electronic Spectroscopy", Elsevier publishing company, New York, 278, (1968).
- 21. Vanquickenbrone, L.G. and Ceulemans, A.; Inorg.Chem., 20, 760, (1981).
- 22. Jorgensen, C.K.; Acta. Chem. Sacnd.; 1362, (1955).
- 23. Holmes, O.G. and Meclure, D.S.; J.Chem.Phys. 26, 1686, (1957).

- 24. Quaglrine, J.V.; Fujita, J.; Franz, G.; philips, D.J.; Walmsliy, J.A. and Tyree, S.Y.; J. Am.Chem. Soc., 81, 3770, (1961).
- **25.** Preti, C. and Tosi, G.; J. Inorg. Nucl. Chem., 36, 3725, (1974).

Compounds	u (CH)	Ring vibration	d inplane	u (PdN)	
	Ar.,AI.	u (CN), u (CC)	(CH)		
2-pic	3070 ,2933	1596 ,1470	1052		
trans-[PdCl ₂ (2-pic) ₂]	3050 ,2945	1602 ,1490	1100	480	
3-pic	3050 ,2941	1590 ,1481	1031		
trans-[PdCl ₂ (3-pic) ₂]	3052,2951	1600 ,1480	1100	520	
$[Pd(3-pic)_4](BF_4)_2$	3050 ,2928	1600,1490	1170	520	
4-pic	3075 ,2930	1603 ,1493	1040		
trans-[PdCl ₂ (4-pic) ₂]	3070 ,2924	1618 ,1502	1070	507	
[Pd(4-pic) ₄](BF ₄) ₂	3070 ,2923	1622 ,1510	1100	513	
Compounds	u (NH)	Ring vidration	d inplane	u (PdN)	
	as.,s.	u (CN), u (CC)	(NH)		
2-ampy	3455 ,3335	1600 ,1492	1625		
trans-[PdCl ₂ (2-ampy) ₂]	3460 ,3340	1605,1510	1550	490	
[Pd(2-ampy) ₄](BF ₄) ₂	3451 ,3395	1632 ,1499	1600	527	
3-ampy	3350 ,3205	1590 ,1481	1620		
trans-[PdCl ₂ (3-ampy) ₂]	3410 ,3205	1620 ,1485	1580	550	
[Pd(3-ampy) ₄](BF ₄) ₂	3400 ,3300	1628 ,1505	1555	550	
4-ampy	3444 ,3330	1602 ,1493	1630		
trans[PdCl ₂ (4-ampy) ₂]	3442 ,3223	1620,1510	1556	520	
[Pd(4-ampy) ₄](BF ₄) ₂	3440,3320	1620,1500	1585	540	

Table 2: I.R	spectral d	data of the	ligands and	its comp	olexes (cm	¹¹)
			8		(-	

Ar =Aromatic

AI =Aliphatic as. =Asymetric s. =symertric pic=picoline

Compounds	1 (nm)	u. (am-1)	εmax	M.C.*	
Compounds	1 (1111)	u (cm)	$M^{-1}.cm^{-1}$	Ohm ⁻¹ .cm ² .mol ⁻¹	
2-pic	275	36363	2411		
trans-[PdCl ₂ (2-pic) ₂]	281	35587	1660		
	314	31874	982	18.9	
	391	25575	331		
3-pic	275	36363	1975		
trans-[PdCl ₂ (3-pic) ₂]	284	35211	2197		
_	317	31545	1130	20	
	394	25380	932		
$[Pd(3-pic)_4](BF_4)_2$	278	35971	1353		
	330	30303	250	133	
	725	13793	2		
4-pic	275	36363	2354		
trans-[PdCl ₂ (4-pic) ₂]	278	35971	1233		
	310	32258	300	17	
	392	25510	324		
$[pd(4-pic)_4](BF_4)_2$	279	33670	1810		
	360	27777	790	143	
	752	13297	35		
2-ampy	275	36363	2043		
trans-[PdCl ₂ (2-ampy) ₂]	278	35971	1679	15.5	
	305	32786	1032	13.3	
[Pd(2-ampy) ₄](BF ₄) ₂	279	33670	1580		
	325	30769	750	150	
	735	13605	28		
3-ampy	275	36363	1553		
trans[PdCl ₂ (3-ampy) ₂]	278	35971	923	11.6	
	317	31545	1186	11.0	
$[Pd(3-ampy)_4](BF_4)_2$	275	36363	1631		
	301	33222	2466	160	
	702	14245	7		
4-ampy	275	36363	2340		
trans-[PdCl ₂ (4-ampy) ₂]	291	34364	936	21.7	
	365	27397	279	21./	
[Pd(4-ampy) ₄](BF ₄) ₄	290	34482	2356		
	360	27777	750	135	
	783	12771	71		

Table 3: Electronic spectral data and conductance measurmentsof the ligands and its complexes in DMF solvent.

* M.C = Molar conductance

AJPS, 2008, Vol. 5, No. 1

Table 1: Analytical and physical data of the complexes:

Complexes *	colour	M.Wt	Dec.º c	Yield%	Fou
trans -[PdCl ₂ (2-pic) ₂)]	Pale yellow	363.57	325	93	39.4 (39.6)
trans-[PdCl ₂ (3-pic) ₂]	Greensh yellow	363.57	320	97	38.4 (39.6)
[Pd(3-pic) ₄](BF ₄) ₂	Yellow	652.52	265	84	44.0 (44.1)
trans-[PdCl ₂ (4-pic) ₂]	Pale yellow	363.57	330	97	39.4 (39.6)
[Pd(4-pic) ₄](BF ₄) ₂	Pale yellow	652.52	265	81	43.87 (44.1)
trans-[pdCl ₂ (2-ampy) ₂)]	Pale-yellow	365.55	336	85	30.9 (32.8)
[Pd(2-ampy) ₄](BF ₄) ₂	Dark yellow	656.48	280	72	32.4 (36.5)
trans-[PdCl ₂ (3-ampy) ₂]	Greensh yellow	365.55	335	93	33.02 (32.8)
[Pd(3-ampy) ₄](BF ₄) ₂	Dark yellow	656.48	270	75	35.4 (36.5)
trans-[PdCl ₂ (4-ampy) ₂]	Pale yellow	365.55	340	93	32.6 (32.8)
[Pd(4-ampy) ₄](BF ₄) ₂	Dark yellow	656.48	275	87	35.8 (36.5)

• pic = picoline ampy = aminopyridine

Fig. (4) Electronic spectrum of complex *trans* –[PdCl₂(4-Pic)₂]

Fig 1: The suggested structure for the complexes a - *trans*-[Pd Cl₂ (4-pic)₂] b - [Pd(4-ampy)₄]⁺² pic = picoline ampy = aminopyridine

Fig 2: I.R spectrum of *trans* – [PdCl₂(4-Pic)₂]

Fig 3: I.R spectrum of complex $[Pd(2-ampy)_4]^{+2}$