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              Abstract:                           Abstract: 

 

Among many therapeutic treatments for 

cancer, nano-carriers are the focus of our 

review to illustrate the update usage of 

this drug delivery approach, the most 

likely side effects and the reality of their 

potential application with minimum 

adverse effects. Here, we demonstrate 

the types of these nano-carriers based on  

 

their nature with detailed recent studies about their use. The variation in the skeleton of these 

nanoparticles enable the selection of the suitable type with higher specifications than others.  

However, the poor in vivo testing is the main stumbling block for completion of their 

manufacturing. This review will help the researchers to find the road map for further 

investigation to finally aid the pharmaceutical companies in manufacturing these nano-

carriers in appropriate dosage forms to save the life of millions of people in the world.     
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 :الخلاصة
 لإيصال   التحديث  استخدام  لتوضيح  مراجعتنا  محور  هو  النانو  ناقل  فإن  ،  للسرطان  العلاجية  العلاجات   من  العديد  بين  من
  ناقلات   أنواع  هنا  نوضح.  الجانبية  الآثار  من  الأدنى  الحد  مع  تطبيقها  وحقيقة  المحتملة  الجانبية  والأعراض  ،  الدواء  هذا
  لهذه  العظمي  الهيكل  في  التباين  يمكّن.  استخدامها  حول  مفصلة   حديثة  دراسة  خلال   من  طبيعتها  على   بناء    هذه  النانو

 على   العثور  في  الباحثين  المراجعة   هذه  ستساعد  غيرها  من  أكثر  بمواصفات  الأفضل  النوع  اختيار  من  النانوية  الجسيمات
 الاشخاص    ملايين  حياة  لإنقاذ  الجرعي  الشكل  هذا  تصنيع  في  الأدوية  شركة  لمساعدة  التحقيق  من  لمزيد  الطريق  خارطة

 . العالم  في
 

 النانوية الناقلات, السرطان علاج, النانوية الحبيبات,  المعكوسة المذيلات,  الاورام علم :المفتاحية الكلمات

 

Introduction 
Nowadays, cancer invading millions of 

people around the world since its rapidly 

expanded with a more than one million 

cases per year which made it the second 

cause of death in the world [1-4].  Despite 

the fact that there are many options for the 

treatment of oncological diseases; 

chemotherapy, radiation and sugary 

represent the appropriate choice among 

other therapies [5,6]. Chemotherapy is 

complex due to the variation in the 

pathogenesis and symptoms [3].  In 

addition, drugs cannot differentiate 

between the healthy and cancer cell which 

results in triggering undesirable effects to 

the patients such as mucositis, suppression 
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of bone marrow activity, nausea, 

secondary neoplasms and infertility [2, 5]. 

Furthermore, low selectivity and 

possibility of recurrence are common [3]. 

For these reasons, the chemotherapeutic 

drugs were developed to be delivered 

either passively or actively by nano-

carriers [2, 7]. Passive type enables the 

chemotherapeutic drug to accumulate 

within tumor cells. While, active one 

involves a conjugation of nanocarrier 

containing chemotherapeutic drug with an 

antigen or receptor on the cancer cell [2]. 

Nano-carriers possess an advantage over 

their free drug counterpart such as 

preventing the drug form biological 

degradation, ensure better absorption than 

free form and improving pharmacokinetic 

route [2].   

Types of nano-carriers for cancer 

targeting: 

The size of particles range form 100-200 

nm [8]. They are varied in their structure 

such as lipids [3, 9-12], polymers and PLGA 
[13-19], carbon structure [20-22], proteins [23, 

24], inorganic metals [25-27], silica based [28, 

29], viral [30-33]. As well as they are varied 

in their shape including spherical, rod, 

geometrical and wire [34].                  

Lipid based nano-carriers  

They have a vital role in the enhancement 

of the solubility of lipophilic materials [35, 

36]. Lipid based formulations (LBFs) have 

a great impact on improving the solubility 

of class II and IV type drugs (poorly water-

soluble drugs) [5,37]. These “grease ball” 

type of drug can enhance both oral and 

parenteral bioavailability [37-39] and have 

advantages on delivery of ophthalmic drug 

by enhancing their bioavailability, 

targeting and controlling drug release [40]. 

Lipid-based nano-carriers, including 

nanoemulsions, liposomes, cubosomes and 

niosomes [41].  

Liposomes are spherical in shape that 

consist of phospholipid in which a 

phosphate is the hydrophilic head and fatty 

acid is the hydrophobic tail. When they are 

introduced into water, they are self-

assembled into vesicle that consist of 

bilayer [42, 43]. The vesicle has the ability to 

envelop either hydrophilic and 

hydrophobic drugs in which the 

hydrophilic drug can be entrapped inside 

the vesicle while the hydrophobic drug 

incorporated into the lipid bilayer [44]. 

Liposomes are varied with their 

permeability, charge density and steric 

hindrance [45]. 

 Liposomal nanocarriers can protect the 

chemotherapeutic drugs from degradation, 

improving their bioavailability by 

accumulation in the tumor cells and 

consequently reducing the side effects [46]. 

Cytarabine (cytosine arabinoside) is an 

example of chemotherapeutic drug that 

interfering with DNA synthesis thus inhibit 

cancer growth [42]. For example, liposomal 

vesicles act as carrier and intact carrier 

enters the SC carrying drug molecule then 

vesicles worked as penetration enhancers 

and modify SC intercellular lipid lamellae 

and thus facilitate the penetration of free 

drug molecules into and across the SC. In 

addition, elastic liposomes can effectively 

protect the drug against undesired skin 

clearance into cutaneous blood vessels and 

are capable of retaining the drug long 

enough on, in and below the skin barrier 
[47].  

Doxil is another example of liposomal 

formulation of doxorubicin for treatment 

of Kaposi sarcoma and multiple myeloma. 

Doxil can passively be targeted to the 

tumor cells with a lower concentration of 

doxorubicin achieved in healthy cells [10, 

45]. The mechanism of action for DOX is to 

bind to DNA, and therefore, following 

passive diffusion into the cell cytoplasm, 

the DOX was clearly able to accumulate 

within the nucleus [48].    However, the 

conventional liposomes have many 

problems such as low drug loading, and 

rapid elimination form blood stream due to 

rapid uptaking by reticular- endothelium 

system (RES) [49]. Therefore, the surface of 

the liposome can be modified with 

different moieties such as polyethylene 
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glycol (PEG), ligand such as antibody, 

carbohydrate, protein and theranostic 

liposome (diagnostic and treatment 

liposome) [42, 50].                                

Large unconjugated liposomes are 

eliminated more rapidly than small, 

neutral, or positively charged one [49]. The 

pegylated liposome is sterically-stable type 

to prevent rapid uptake by RES which 

offers a better circulating time. Other 

limitations include the immunological 

response [51] which can be reduced by 

methylation of the PEG type of a nano-

carrier. Increasing the liposomal activity 

can be achieved by the addition of a 

postive charged lipid to the liposome to 

increase the muco-adhesive and bio-

adhesive property by ionic interaction [52] 

such as targeting of liposome to the GIT 
[49, 53-55]. Despite the fact that there are 

many formulation and chemical 

modification resolutions but there are 

many obstacles such as pharmaceutical, 

governmental rules and intellectual 

property [56]. Regarding to the 

pharmaceutical aspect, the cost and the 

stability of a new liposomal product 

restricts its production [49,57]. The number 

of the control group required for this type 

of study limits the manufacturing of such 

type of liposome [49].             

 

Polymer based nano-carriers and 

micelles  

Depending on the incorporation 

mechanism, polymeric-based carriers can 

be divided into three main types which are: 

Polymer–drug conjugates via covalent 

conjugation, polymeric micelles through 

hydrophobic interactions and polyplexes or 

polymersomes by encapsulation [5, 58, 59].  

Polymer-drug conjugate (PDC):  The 

combination of the chemotherapeutics drug 

with macromolecules is the oldest method 

for oncological delivery among other 

methods [60-62]. Enhancement of the drug 

solubility and bioavailability, retarding 

drug releaseand reduction of toxic effects 

of the chemotherapeutic drug produced by 

this type of conjugates rendered it the 

favorable type for delivering drug to the 

site of action.  In addition, the nano-size 

ensure accumulation of drug at the site of 

action due to increasing the permeability 

and retarding drug at tumor site [63, 64]. This 

type can be prepared by PEG, 

polyglycerol, poly (2-methoxy-2-oxoethyl 

methacrylate) (MEMA), poly (L-amino 

acid) and poly(N-(2-hydroxypropyl) 

methacrylamide) (HPMA) though pH-

triggered system [65]. N-(2-hydroxypropyl) 

methacrylamide copo-lymer conjugated 

with both amino-gluthetimide and 

doxorubicin (HPMA-AGM-Dox) to act as 

aromatase inhibitor for the treatment of 

chemotherapy-resistant breast cancer with 

reduction in the toxicity [66, 67].  Other 

example for this type is the combination 

therapy of paclitaxel (PTX) and 

cyclopamine (CYP) which work 

synergistically. PTX and CYP conjugated 

to the carboxyl groups of polys (ethylene 

glycol)-block-poly (2-methyl-2-carboxyl-

propylene carbonate) (mPEG-b-PCC) [64]. 

These drugs are highly hydrophobic so that 

this polymer-conjugates is the better 

choice [68, 69]. 

Micelles are polymer aggregates with a 

size of (10–200 nm) consist of 

hydrophobic core and a hydrophilic corona 

which are self-assembled to be 

thermodynamically stable. The outer 

hydrophilic chains cover the hydrophobic 

core which inhibit direct contact with 

water thus reducing the probability of 

polymer-water system formation [70]. The 

linear amphiphilic molecules arranged via 

a self-assembly process.  For this reason, 

the stability of the micelles is affected by 

the concentration, flow stress and 

interactions with serum proteins [71].                       

In cancer, two phenomena are existed, the 

1st one is the increased vascular 

permeability and 2nd is the defective 

lymphatic drainage that allows the leakage 

of both blood plasma components and 

micelle ranges from tens-thousands 

nanometer into tumor tissue to be retained 

in tissues. This phenomenon is termed 
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enhanced permeability and retention 

(EPR). [72-74]. 

Polymeric micelles attract many 

researchers to use them for the delivery of 

hydrophobic drugs due to the 

hydrophobicity of the core that enhances 

the solubility of slightly soluble drugs with 

hydrophilic shell that stabilizes the 

colloidal system, hence long circulation 

time [75]. In addition, to the EPR effect due 

to the nanosize [72]; Furthermore, the shell 

could be modified with ligand such as 

antibody, peptide, folate, and biotin for 

specific targeting [76]. Finally, the release 

behavior, drug loading and stability can be 

adjusted form the architected micelle such 

as addition of pH sensitive property [75]. 

Endocytosis in polymeric micelle 

happened without any surface ligand for 

targeting [77].                                                         

Paclitaxel (PTX) is a chemotherapeutic 

drug used for the treatment of solid tumors. 

However, its neurotoxicity and 

hypersensitivity limit its use [78]. A 

polymeric micelle, Genexol®-PM 

significantly improves PTX solubility and 

decreases its toxicity both in vivo and in 

vitro [79].  The amphiphilic carboxymethyl 

chitosan-rhein conjugate (CR conjugate) 

could self-assemble in water and form CR 

PMs and encapsulate PTX [80]. An 

amphiphilic copolymer with poly (lactic 

acid) (PLA) block and poly (2-ethyl-2-

oxazoline) (PEOz) block which represent a 

hydrophobic core for (PTX) [81]. The 

PEOz is used due to lower toxicity and 

better solubility than PEG [82]. 

Furthermore, PEOz has a an attractive pKa 

value that donates proton at a pH of (4.5–

6.5) with the release is being pH sensitive 
[83].  

However, there are some limitations of 

polymeric delivery and micelles regarding 

to the stability issue which might result in 

leakage of the drug, diffusion of protein, 

absorption of protein and dilution below 

critical micelle concentration. 

Furthermore, the high cost of high drug 

loading while lower drug loading results in 

faster drug release in addition to fast 

clearance form RES [84].  Poor transfusion, 

high toxicity and poor solubility in 

aqueous solution are other disadvantages 

of some polymeric micelles [85].   

Dendrimers 

The size of the dendrimer used for cancer 

targeting is between 5-50 nm [86]. A three-

dimensional treelike structure with a core 

molecule which is mainly composed of 

three main composition which are initiator 

core, branches and terminal functional 

group [87-89]. They are varying from low to 

high molecular weight and they are either 

natural or synthetic [87]. The dendrimer can 

be modified and conjugated to the drug 

through hydrogen bonding, hydrophobic 

interaction and chemical bonds [90]. 

They have a definite size, structure and 

molecular weight that provide a flexibility 

for various applications. The large surface 

area of dendrimer offers a suitable 

recognition for the receptors [91]. 

Additionally, it has a low immunological 

sensitivity with appropriate solubility and 

potential selectivity with low systemic side 

effects.[92]. [93].  

Functionalization of dendrimers with 

monoclonal antibodies (mAbs) which have 

the ability to bind with the surface of the 

cancer cell via covalent bonding to 

produce immunodendrimers [94] An 

example of this type is the conjugation 

between monoclonal antibody K1 

(mAbK1) and half-generation poly 

(propylene imine) (PPI) dendrimers for the 

treatment of ovarian cancer. By 

introducing paclitaxel (PTX) to the 

hydrophobic part to produce mAbK1-PPI-

PTX, it was found that there is an 

extension in animal survival significantly 

by increasing drug uptake into the cancer 

cell [95]. The efficacy PTX in the treatment 

of pancreatic cancer increased by coupling 

with peptide conjugate dendrimer that 

results in accumulation in pancreatic 

cancer cell [96-99].  Doxorubicin is another 

example of chemotherapeutic drug that 

encapsulated to the peptide dendrimer by 

covalent bonding [100]. 
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Metal based and magnetic nanoparticles 

These are particles that result from the 

binding of a drug into magnetic particles 

(MNPs). Their size ranged from 10-100 

nm with ability to deliver radionucleotide 

with aim of targeting tumor cell in addition 

to diagnostic purpose [101-106].  External 

magnet can be used for the delivery of 

nanocarriers into the tumor cells for the 

reduction of side effects. Furthermore, in 

this condition, particle agglomeration risk 

is excluded [107-109].  Many factors affecting 

application of magnetic nanocarriers such 

as colloidal stability, cytotoxicity and 

duration [110]. Iron oxide NPs (IONPs) was 

approved by FDA because of their 

biological compatibility, low toxicity and 

easy synthesis. Superparamagnetic 

(IONPs) can be obtained from size below 

27 nm which is called (SPIONs) [111].  

SPION was successfully translated for the 

treatment of glioblastoma multiforme in 

Europe [112]. 

Carbon-based nanoparticles 

Carbon nanotubes (CNTs) are delivering 

molecules into cytoplasm by using 

‘‘needle-like penetration’’. They enter to 

the tumor cells by endocytosis to be 

protected from the cellular pump [20]. Its 

size is varied form 1 nm to 1 µm with high 

surface area which results in introducing of 

the drug into the cancer cells with high 

loading by passive diffusion [113].  The 

shape of the carbon-based nanoparticles 

looks like a tube rolled with sheets of 

graphene which enable penetration of the 

material into the cell. They are either 

single or multi-walled. There are several 

types including garphenes, fullerenes, 

carbon nanotubes or carbon quantum dote. 

They could form either a covalent or non-

covalent interaction.  A covalent 

interaction involves introducing a 

hydroxyl, carboxyl and amino group into 

the surface of the molecule with further 

protection using PEG. One the other hand, 

a non-covalent interaction is formed 

through amphiphilic molecules to the 

surface of the cell [113]. They have many 

applications, besides their use in cancer 

drug delivery, they have been applied in 

tumor imaging and diagnosis. Example of 

carbon-based type is doxorubicin can be 

loaded up to 400% by weight [5]. They 

have been applied in gene therapy to fight 

the cancer cell via gene delivery without 

any limitation to the size by carrying the 

plasmid and interfering with RNA of the 

tumor [20].  

Although carbon-based nanoparticles have 

many advantages for the eradication of 

cancer cells. Some disadvantages are 

existed related to their toxicity due to high 

uptake form liver with low clearance [113].  

In addition, DNA damage perhaps results 

from the high dose of this type that might 

result in mitochondrial damage [20]. For 

this reason, coating this nanotube carriers 

with polymers may prevent their retention 

in the organ, improve their ability to 

circulate in the blood and enhance their 

clearance [20].      

Genral Limtations of nano-carriers 

Despite the fact that nano-carriers are a 

promising strategy for cancer therapy, 

many limitations might be observed which 

restrict their application. The first 

limitation is the resistance of the drug due 

to the sustained action at the site of action. 

For this reason, multifunctional targeted 

nano-carriers have been developed, 

distribution of the endosome to ensure a 

quick drug release in the cytoplasm and 

using of multiple drug or drug-nucleic 

acid.   In addition, to that changing the 

physicochemical properties of the drug 

such as changing the particles size, 

agglomeration behavior and initial drug 

release.     

Novel materials that form nano-carriers 

such as organic and inorganic materials 

can have a toxic effect such as gold and 

carbon nanotubes. For this reason, factors 

such as particle size, encapsulation 

efficacy and desired release profile and 

cost will solve this problem. 

Nanoparticles in the systemic circulation 

are recognized by reticular-endothelial 



Al Mustansiriyah Journal of Pharmaceutical Sciences, 2020, Vol. 20, No.1                 (Review article) 

 

 

AJPS (2021)  60 
 

system with accumulation in the spleen 

and liver that might results in toxic effects. 

For this reason, particles size should be 

selected carefully for targeting without this 

side effect.  

Slow development of the nano-carriers to 

be approved by the FDA is due to the 

absence of testing these nano-carriers in 

vivo at the real time.  Consequently, few 

products such as DaunoXome®, Doxil®, 

Myocet® and Onco-TCS ® have been 

approved. 

 

Conclusions  

Many formulation strategies such as 

liposome and carbon based naanocarrier 

can solve the problems of nano-carriers 

used for cancer treatment besides focusing 

on the extensive in vivo testing to make 

these products are available in the market 

within a short period of time. The slight 

physicochemical modification may help to 

solve some problems related to the side 

effects and fate of these products. This will 

help pharmaceutical industry to produce 

chemotherapeutic drugs to treat millions of 

people in the world with fewer adverse 

effects.   
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