Effects Of Topical Petroleum Ether and Ethyl Acetate Fractions from Grape Seed Extract on Imiquimod-Induced Psoriasis Like Skin Inflammation in Mice


  • Mohammed Fareed University of AL-Nahrain / College of Pharmacy
  • Ayah F. Al-Qrimli University of AL-Nahrain / College of Pharmacy




psoriasis, vitis vinifera, grape, Imiquimod


Background: Grape seed is a natural herb with many suggested pharmacological effects related to many biologically active compounds in its extract and fractions. Grape seed pharmacological effect is investigated in mice psoriasis like model.

Methods: A thirty male albino mice, six weeks’ age used in this research and were divided into five groups. Group I apparently healthy. Group II induction group, imiquimod 5% cream once daily used at the back skin of the animal for five days. Group III, IV and V treatments groups. Group III clobetasol ointment 0.05%, group IV Grape seed extract and group V Grape seed petroleum ether fraction for five days. Results: A high significant increase was found between the apparently healthy and imiquimod induced group for all of the investigated parameters except munro abscess was significant increase. For the grape seed extract group, it was found A significant difference in immunohistochemistry score of IL17, also significant decrease in vascular endothelial growth factor (VEGF) with high significant decrease of other immunohistopathology measurement like parakeratosis. Conclusion: Grape seed extract may have a role in imiquimod-induced psoriasis like skin inflammation in mice treatment which make it a future candidate therapy for psoriasis.


Daniyal M, Akram M, Zainab R, Munir N, Shah SMA, Liu B, et al. Progress and prospects in the management of psoriasis and developments in phyto‐therapeutic modalities. Dermatologic Therapy [Internet]. 2019 May [cited 2023 Apr 13];32(3). Available from: https://onlinelibrary.wiley.com/doi/10.1111/dth.12866 DOI: https://doi.org/10.1111/dth.12866

Schacke H, Wolf Dietrich D, Khusru A. Mechanisms involved in the side effects of glucocorticoids. Pharmacology & Therapeutics. 2002 Oct;96(1):23–43. https://linkinghub.elsevier.com/retrieve/pii/S0163725802002978 DOI: https://doi.org/10.1016/S0163-7258(02)00297-8

Filocamo A, Bisignano C, Mandalari G, Navarra M. In Vitro Antimicrobial Activity and Effect on Biofilm Production of a White Grape Juice ( Vitis vinifera ) Extract. Evidence-Based Complementary and Alternative Medicine. 2015;2015:1–5. http://www.hindawi.com/journals/ecam/2015/856243/ DOI: https://doi.org/10.1155/2015/856243

Radulescu C, Buruleanu LC, Nicolescu CM, Olteanu RL, Bumbac M, Holban GC, et al. Phytochemical Profiles, Antioxidant and Antibacterial Activities of Grape (Vitis vinifera L.) Seeds and Skin from Organic and Conventional Vineyards. Plants. 2020 Oct 30;9(11):1470. https://www.mdpi.com/2223-7747/9/11/1470 DOI: https://doi.org/10.3390/plants9111470

Goufo P, Singh RK, Cortez I. A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants. 2020 May 8;9(5):398. https://www.mdpi.com/2076-3921/9/5/398 DOI: https://doi.org/10.3390/antiox9050398

Ma Z, Zhang H. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants. 2017 Sep 15;6(3):71. http://www.mdpi.com/2076-3921/6/3/71 DOI: https://doi.org/10.3390/antiox6030071

Yilmaz Y, Toledo RT. Health aspects of functional grape seed constituents. Trends in Food Science & Technology. 2004 Sep;15(9):422–33. https://linkinghub.elsevier.com/retrieve/pii/S0924224404001128 DOI: https://doi.org/10.1016/j.tifs.2004.04.006

Varzakas T, Zakynthinos G, Verpoort F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods. 2016 Dec 10;5(4):88. http://www.mdpi.com/2304-8158/5/4/88 DOI: https://doi.org/10.3390/foods5040088

Sharif A, Akhtar N, Khan MS, Menaa A, Menaa B, Khan BA, et al. Formulation and evaluation on human skin of a water-in-oil emulsion containing Muscat hamburg black grape seed extract. Int J Cosmet Sci. 2015 Apr;37(2):253–8. https://onlinelibrary.wiley.com/doi/10.1111/ics.12184 DOI: https://doi.org/10.1111/ics.12184

Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed extract: having a potential health benefits. J Food Sci Technol. 2020 Apr;57(4):1205–15. http://link.springer.com/10.1007/s13197-019-04113-w DOI: https://doi.org/10.1007/s13197-019-04113-w

Tokuyama M, Mabuchi T. New Treatment Addressing the Pathogenesis of Psoriasis. IJMS. 2020 Oct 11;21(20):7488. https://www.mdpi.com/1422-0067/21/20/7488 DOI: https://doi.org/10.3390/ijms21207488

Jain A, Ramesh V, Das R. Current concepts in the pathogenesis of psoriasis. Indian J Dermatol. 2009;54(1):7. http://www.e-ijd.org/text.asp?2009/54/1/7/48977 DOI: https://doi.org/10.4103/0019-5154.48977

Moos S, Mohebiany AN, Waisman A, Kurschus FC. Imiquimod-Induced Psoriasis in Mice Depends on the IL-17 Signaling of Keratinocytes. Journal of Investigative Dermatology. 2019 May;139(5):1110–7. https://linkinghub.elsevier.com/retrieve/pii/S0022202X19300223 DOI: https://doi.org/10.1016/j.jid.2019.01.006

Pukale SS, Sharma S, Dalela M, Singh AK, Mohanty S, Mittal A, et al. Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in Swiss albino mice. Acta Biomaterialia. 2020 Oct;115:393–409. https://linkinghub.elsevier.com/retrieve/pii/S1742706120304803 DOI: https://doi.org/10.1016/j.actbio.2020.08.020

Albrahim T, Robert A. Renal protective effects of grape seed extract treatment against Eltroxin-induced hyperthyroidism, kidney damage, and oxidative stress in male mice. Environ Sci Pollut Res. 2020 May;27(15):17963–71. https://link.springer.com/10.1007/s11356-020-08210-8 DOI: https://doi.org/10.1007/s11356-020-08210-8

Hwang IK, Kim DW, Park JH, Lim SS, Yoo KY, Kwon DY, et al. Effects of grape seed extract and its ethylacetate/ethanol fraction on blood glucose levels in a model of type 2 diabetes: ANTIDIABETIC EFFECT OF GRAPE SEED EXTRACT. Phytother Res. 2009 Aug;23(8):1182–5. https://onlinelibrary.wiley.com/doi/10.1002/ptr.2779 DOI: https://doi.org/10.1002/ptr.2779

Al Juhaimi F, Özcan MM. Effect of cold press and soxhlet extraction systems on fatty acid, tocopherol contents, and phenolic compounds of various grape seed oils. J Food Process Preserv. 2018 Jan;42(1):e13417. https://onlinelibrary.wiley.com/doi/10.1111/jfpp.13417 DOI: https://doi.org/10.1111/jfpp.13417

Baydar NG, Özkan G, Sağdiç O. Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control. 2004 Jul;15(5):335–9. https://linkinghub.elsevier.com/retrieve/pii/S0956713503000835 DOI: https://doi.org/10.1016/S0956-7135(03)00083-5

Shaukat UA, Anwar F, Akhtar MT, Qadir R, Zahoor S, Saba I, et al. Variations in Physico-Chemical and Antioxidant Attributes of Grape Seed Oil as Function of Extraction Techniques. JSM. 2022 Jul 31;51(7):2087–96. http://www.ukm.my/jsm/pdf_files/SM-PDF-51-7-2022/12.pdf DOI: https://doi.org/10.17576/jsm-2022-5107-12

Verma SK, Lindsay DS, Grigg ME, Dubey JP. Isolation, Culture and Cryopreservation of Sarcocystis species. Current Protocols in Microbiology [Internet]. 2017 May [cited 2023 May 17];45(1). Available from: https://onlinelibrary.wiley.com/doi/10.1002/cpmc.32 DOI: https://doi.org/10.1002/cpmc.32

Baker BS, Brent L, Valdimarsson H, Powles AV, Al-Imara L, Walker M, et al. Is epidermal cell proliferation in psoriatic skin grafts on nude mice driven by T-cell derived cytokines? Br J Dermatol. 1992 Feb;126(2):105–10. https://academic.oup.com/bjd/article/126/2/105/6686113 DOI: https://doi.org/10.1111/j.1365-2133.1992.tb07805.x

Peacock J, Peacock PJ. Oxford handbook of medical statistics. Oxford: Oxford University Press; 2011. DOI: https://doi.org/10.1093/med/9780199551286.001.0001

Yang Y, Zhao Y, Lai R, Xian L, Lei Q, Xu J, et al. An Emerging Role of Proanthocyanidins on Psoriasis: Evidence from a Psoriasis-Like Mouse Model. Arcanjo DDR, editor. Oxidative Medicine and Cellular Longevity. 2022 Jun 8;2022:1–13. https://www.hindawi.com/journals/omcl/2022/5800586/ DOI: https://doi.org/10.1155/2022/5800586

Abudlqader EH, Kadhim HM. Evaluation of Anti-Psoriatic Effects of Ellagic Acid on Imiquimod Induced Psoriatic-Like Dermatitis in Mice. ATMPH [Internet]. 2021 [cited 2023 May 17];24(02). Available from: https://www.journal.atmph-specialissues.org/uploads/179/9361_pdf.pdf DOI: https://doi.org/10.36295/ASRO.2021.24216

Socha M, Kicinski P, Feldo M, Zubilewicz T, Pietrzak A. Assessment of selected angiogenesis markers in the serum of middle‐aged male patients with plaque psoriasis. Dermatologic Therapy [Internet]. 2021 Jan [cited 2023 May 17];34(1). Available from: https://onlinelibrary.wiley.com/doi/10.1111/dth.14727 DOI: https://doi.org/10.1111/dth.14727

Nofal A, Al-Makhzangy I, Attwa E, Nassar A, Abdalmoati A. Vascular endothelial growth factor in psoriasis: an indicator of disease severity and control. Journal of the European Academy of Dermatology and Venereology. 2009 Jul;23(7):803–6. https://onlinelibrary.wiley.com/doi/10.1111/j.1468-3083.2009.03181.x DOI: https://doi.org/10.1111/j.1468-3083.2009.03181.x

Xue Y, Liu Y, Bian X, Zhang Y, Li Y, Zhang Q, et al. miR‐205‐5p inhibits psoriasis‐associated proliferation and angiogenesis: Wnt/β‐catenin and mitogen‐activated protein kinase signaling pathway are involved. J Dermatol. 2020 Aug;47(8):882–92. https://onlinelibrary.wiley.com/doi/10.1111/1346-8138.15370 DOI: https://doi.org/10.1111/1346-8138.15370

Van Der Fits L, Mourits S, Voerman JSA, Kant M, Boon L, Laman JD, et al. Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice Is Mediated via the IL-23/IL-17 Axis. The Journal of Immunology. 2009 May 1;182(9):5836–45. https://journals.aai.org/jimmunol/article/182/9/5836/104045/Imiquimod-Induced-Psoriasis-Like-Skin-Inflammation DOI: https://doi.org/10.4049/jimmunol.0802999

Chopra A, Geetha RV. In vitro anti-inflammatory activity of vitis vinifera seed extract using albumin denaturation assay. plant cell biotechnology and molecular biology. 2020 Nov 3;21(49–50):33–7.

Chen F, Ye X, Yang Y, Teng T, Li X, Xu S, et al. Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses. Phytomedicine. 2015 Apr;22(4):510–5. https://linkinghub.elsevier.com/retrieve/pii/S0944711315000720 DOI: https://doi.org/10.1016/j.phymed.2015.03.006

Sangiovanni E, Di Lorenzo C, Piazza S, Manzoni Y, Brunelli C, Fumagalli M, et al. Vitis vinifera L. Leaf Extract Inhibits In Vitro Mediators of Inflammation and Oxidative Stress Involved in Inflammatory-Based Skin Diseases. Antioxidants. 2019 May 16;8(5):134. https://www.mdpi.com/2076-3921/8/5/134 DOI: https://doi.org/10.3390/antiox8050134

Sharafan M, Malinowska MA, Ekiert H, Kwaśniak B, Sikora E, Szopa A. Vitis vinifera (Vine Grape) as a Valuable Cosmetic Raw Material. Pharmaceutics. 2023 Apr 29;15(5):1372. DOI: https://doi.org/10.3390/pharmaceutics15051372

Lai R, Xian D, Xiong X, Yang L, Song J, Zhong J. Proanthocyanidins: novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Report. 2018 Jan 1;23(1):130–5. https://www.tandfonline.com/doi/full/10.1080/13510002.2018.1462027 DOI: https://doi.org/10.1080/13510002.2018.1462027

Li Q, Wang X, Dai T, Liu C, Li T, McClements DJ, et al. Proanthocyanidins, Isolated from Choerospondias axillaris Fruit Peels, Exhibit Potent Antioxidant Activities in Vitro and a Novel Anti-angiogenic Property in Vitro and in Vivo. J Agric Food Chem. 2016 May 11;64(18):3546–56. https://pubs.acs.org/doi/10.1021/acs.jafc.6b00236 DOI: https://doi.org/10.1021/acs.jafc.6b00236

Ali K, Maltese F, Choi YH, Verpoorte R. Metabolic constituents of grapevine and grape-derived products. Phytochem Rev. 2010 Sep;9(3):357–78. http://link.springer.com/10.1007/s11101-009-9158-0 DOI: https://doi.org/10.1007/s11101-009-9158-0

Mohammed Ridha Jawad, Ghaith Ali Jasim. Biochemical and Histopathological evaluation of prostatic tissue under effect of Pterostilbene in benign prostatic hyperplasia rat model. Al Mustansiriyah J Pharm Sci. 2023 May 23;23(2):196–213. https://ajps.uomustansiriyah.edu.iq/index.php/AJPS/article/view/1022 DOI: https://doi.org/10.32947/ajps.v23i2.1022

Joudah MS, Al-Sudani BT, Arif IS. SIRT1 activators as novel therapy for cancer. Al Mustansiriyah J Pharm Sci. 2019 Aug 1;19(3):28–41. https://ajps.uomustansiriyah.edu.iq/index.php/AJPS/article/view/572 DOI: https://doi.org/10.32947/ajps.v19i3.572

Pektas SD, Dogan G, Edgunlu TG, Karakas-Celik S, Ermis E, Tekin NS. The Role of Forkhead Box Class O3A and SIRT1 Gene Variants in Early-Onset Psoriasis. Indian J Dermatol. 2018;63(3):208–14.

Harbeoui H, Hichami A, Wannes WA, Lemput J, Tounsi MS, Khan NA. Anti-inflammatory effect of grape (Vitis vinifera L.) seed extract through the downregulation of NF-κB and MAPK pathways in LPS-induced RAW264.7 macrophages. South African Journal of Botany. 2019 Sep;125:1–8. https://linkinghub.elsevier.com/retrieve/pii/S0254629918319926 DOI: https://doi.org/10.1016/j.sajb.2019.06.026

Mori H, Arita K, Yamaguchi T, Hirai M, Kurebayashi Y. Effects of Topical Application of Betamethasone on Imiquimod-induced Psoriasis-like Skin Inflammation in Mice. Kobe J Med Sci. 2016 Sep 9;62(4):E79–88.

Ramirez‐Lopez LM, DeWitt CAM. Analysis of phenolic compounds in commercial dried grape pomace by high‐performance liquid chromatography electrospray ionization mass spectrometry. Food Sci Nutr. 2014 Sep;2(5):470–7. https://onlinelibrary.wiley.com/doi/10.1002/fsn3.136 DOI: https://doi.org/10.1002/fsn3.136

Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 2010 Aug;69(3):273–8. https://www.cambridge.org/core/product/identifier/S002966511000162X/type/journal_article DOI: https://doi.org/10.1017/S002966511000162X

Danilenko DM. Review Paper: Preclinical Models of Psoriasis. Vet Pathol. 2008 Jul;45(4):563–75. http://journals.sagepub.com/doi/10.1354/vp.45-4-563 DOI: https://doi.org/10.1354/vp.45-4-563

Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvascular Research. 2007 Sep;74(2–3):172–83. https://linkinghub.elsevier.com/retrieve/pii/S0026286207000611 DOI: https://doi.org/10.1016/j.mvr.2007.05.006

Omala A, Bale S, Godugu C. Protective effects of nanoceria in imiquimod induced psoriasis by inhibiting the inflammatory responses. Nanomedicine. 2020 Jan;15(1):5–22. https://www.futuremedicine.com/doi/10.2217/nnm-2018-0515 DOI: https://doi.org/10.2217/nnm-2018-0515

Artym J, Kocięba M, Zaczyńska E, Kochanowska I, Zimecki M, Kałas W, et al. Topically applied azaphenothiazines inhibit experimental psoriasis in mice. International Immunopharmacology. 2018 Jun;59:276–86. https://linkinghub.elsevier.com/retrieve/pii/S1567576918301310 DOI: https://doi.org/10.1016/j.intimp.2018.03.028




How to Cite

Fareed, M., & Al-Qrimli, A. F. (2024). Effects Of Topical Petroleum Ether and Ethyl Acetate Fractions from Grape Seed Extract on Imiquimod-Induced Psoriasis Like Skin Inflammation in Mice. Al Mustansiriyah Journal of Pharmaceutical Sciences, 24(2), 205–216. https://doi.org/10.32947/ajps.v24i2.1062