Efficacy of gel electrophoresis for proteins and biotechnological products –an overview.

Authors

  • Ammar Q. Muhammed College of Pharmacy, Department of Pharmaceutics, Baghdad College of Pharmacy, Iraq
  • Nidhal K. Maraie Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
  • Basma T. Al-Sudani Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq

DOI:

https://doi.org/10.32947/ajps.v20i4.773

Abstract

Nucleic acids or proteins electrophoresed within a matrix or gel that immersed in a buffer provides ions needed to carry a current and for pH maintenance at a relatively constant value. Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

 

(SDS-PAGE) utilizes SDS as an anionic detergent that causes protein denaturation that linearized protein molecules. Each molecule of SDS has the ability to binds to two amino acids. As a result, the ratio of charge to mass becomes constant for all denatured proteins in the mixture. The molecules of protein migrate toward the positive pole and separated in the gel depending only on their molecular weights. The chains of polyacrylamide are cross linked by N, N-methylene bisacrylamide comonomers and ammonium persulfate used as an initiator for polymerization as they act as radical source and N, N, N', N'- tetramethylethylenediamine (TEMED) used to catalyse the polymerization. Electrophoresis of proteins and nucleic acids by using agarose or polyacrylamide gels were illustrated in this review.

References

- Viovy JL. Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Reviews of Modern Physics. 2000 Jul 1; 72(3):813. DOI: https://doi.org/10.1103/RevModPhys.72.813

- Slater GW, Kist TB, Ren H, Drouin G. Recent developments in DNA electrophoretic separations. Electro-phoresis. 1998 Jul; 19 (10):1525-41. DOI: https://doi.org/10.1002/elps.1150191003

- Heller C. Principles of DNA separation with capillary electro-phoresis. Electrophoresis. 2001 Feb; 22(4):629-43. DOI: https://doi.org/10.1002/1522-2683(200102)22:4<629::AID-ELPS629>3.0.CO;2-S

- Righetti PG, Gelfi C, D'Acunto MR. Recent progress in DNA analysis by capillary electrophoresis. Electrophoresis. 2002 May; 23(10):1361-74. DOI: https://doi.org/10.1002/1522-2683(200205)23:10<1361::AID-ELPS1361>3.0.CO;2-J

- Sartori A, Barbier V, Viovy JL. Sieving mechanisms in polymeric matrices. Electrophoresis. 2003 Feb; 24(3):421-40. DOI: https://doi.org/10.1002/elps.200390052

- Rill RL, Beheshti A, Van Winkle DH. DNA electrophoresis in agarose gels: Effects of field and gel concentration on the exponential dependence of reciprocal mobility on DNA length. Electrophoresis. 2002 Aug; 23(16):2710-9. DOI: https://doi.org/10.1002/1522-2683(200208)23:16<2710::AID-ELPS2710>3.0.CO;2-0

- Slater GW, Guillouzic S, Gauthier MG, Mercier JF, Kenward M, McCormick LC, Tessier F. Theory of DNA electrophoresis (∼ 1999–2002 ½). Electrophoresis. 2002 Dec; 23(22‐23):3791-816. DOI: https://doi.org/10.1002/elps.200290002

- Lee PY, Costumbrado J, Hsu CY, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp. 2012 ;( 62):3923. DOI: https://doi.org/10.3791/3923

- Raak N, Abbate RA, Lederer A, Rohm H, Jaros D. Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications. Separations 2018, 5, 14. DOI: https://doi.org/10.3390/separations5010014

- Hofmann A, Clokie S, editors. Wilson and Walker's principles and techniques of biochemistry and molecular biology. Cambridge University Press; 2018 Apr 19. DOI: https://doi.org/10.1017/9781316677056

- Mondal S, Sujoy Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. Soft Matter, 2020; 16:1404-1454. DOI: https://doi.org/10.1039/C9SM02127B

- Stellwagen NC. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution. Electrophoresis. 2009; 30 (Suppl 1): S188-S195. DOI: https://doi.org/10.1002/elps.200900052

- Sasuga K, Yamanashi T, Nakayama S, Ono S, Mikami K, Optimization of yield and quality of agar polysaccharide isolated from the marine red macroalga Pyropia yezoensis. Algal Research, 2017;26:123-130 DOI: https://doi.org/10.1016/j.algal.2017.07.010

- Barasinski M, Garnweitner G. Restricted and Unrestricted Migration Mechanisms of Silica Nanoparticles in Agarose Gels and Their Utilization for the Separation of Binary Mixtures. J. Phys. Chem. C. 2020; 124:5157-5166. DOI: https://doi.org/10.1021/acs.jpcc.9b10644

- Thomas M, Davis RW. Studies on the cleavage of bacteriophage lambda DNA with EcoRI Restriction endonuclease. J Mol Biol. 1975;91(3):315-328 DOI: https://doi.org/10.1016/0022-2836(75)90383-6

- Koo HS, Wu HM, Crothers DM. DNA bending at adenine. Thymine tracts. Nature. 1986; 320(6062):501-506. DOI: https://doi.org/10.1038/320501a0

- Holmes DL, Stellwagen NC. The electric field dependence of DNA mobilities in agarose gels: a reinvestigation. Electrophoresis. 1990; 11(1):5-15. DOI: https://doi.org/10.1002/elps.1150110103

- Ferguson KA. Starch-gel electrophoresis—application to the classification of pituitary proteins and polypeptides. Metabolism-Clinical and Experimental. 1964 Oct 1; 13(10):985-1002. DOI: https://doi.org/10.1016/S0026-0495(64)80018-4

- Stellwagen NC, Holmes DL. Resol-ution of a paradox in the electrophoresis of DNA in agarose gels. Electrophoresis. 1990; 11(8):649‐652. DOI: https://doi.org/10.1002/elps.1150110813

- Chui MM, Phillips RJ, McCarthy MJ. Measurement of the Porous Microstructure of Hydrogels by Nuclear Magnetic Resonance J Colloid Interface Sci. 1995; 174:336–344. DOI: https://doi.org/10.1006/jcis.1995.1399

- Li S, Li B, Gong L,Yu Z , Yujie Feng Y, Jia D,Zhou Y,Tang L. Enhanced mechanical properties of polyacrylamide/chitosan hydrogels by tuning the molecular structure of hyperbranched polysiloxane. Materials & Design, 2019;162:162-170 DOI: https://doi.org/10.1016/j.matdes.2018.11.045

- Baselga J, Hernández-Fuentes I, Piérola IF, Llorente MA. Elastic properties of highlycrosslinked polyacrylamide gels.Macromolecules. 1987; 20:3060–3065. DOI: https://doi.org/10.1021/ma00178a020

- Weiss N, Van Vleit T, Silberberg A. Permeability of heterogeneous gels. J Polym Sci: Polym Phys Ed. 1979; 17:2229–2240. DOI: https://doi.org/10.1002/pol.1979.180171217

- Heuer DM, Saha S, Archer LA. Topological effects on the electrophoretic mobility of rigid rodlike DNA in polyacrylamide gels. Biopolymers. 2003; 70(4):471-481. DOI: https://doi.org/10.1002/bip.10531

- Stellwagen NC. Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers. Electrophoresis. 1998; 19(10):1542-1547. DOI: https://doi.org/10.1002/elps.1150191004

- Holmes DL, Stellwagen NC. Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide. Electrophoresis. 1991; 12(9):612-619. DOI: https://doi.org/10.1002/elps.1150120903

- Summer H, Grämer R, Dröge P. Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J Vis Exp. 2009 Oct 29 ;( 32):1485. DOI: https://doi.org/10.3791/1485

- Smithies O. Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem J. 1955; 61(4):629‐641. DOI: https://doi.org/10.1042/bj0610629

- Rodbard D, Chrambach A. Unified theory for gel electrophoresis and gel filtration. Proc Natl Acad Sci U S A. 1970; 65(4):970-977. DOI: https://doi.org/10.1073/pnas.65.4.970

- Tan KY, Herr AE. Ferguson analysis of protein electromigration during single-cell electrophoresis in an open microfluidic device. Analyst, 2020; 145:3732-3741. DOI: https://doi.org/10.1039/C9AN02553G

- Olivera BM, Baine P, Davidson N. Electrophoresis of the nucleic acids. Biopolymers. 1964; 2:245–257. DOI: https://doi.org/10.1002/bip.1964.360020306

- Stellwagen NC, Gelfi C, Righetti PG. The free solution mobility of DNA. Biopolymers. 1997; 42(6):687-703. DOI: https://doi.org/10.1002/(SICI)1097-0282(199711)42:6<687::AID-BIP7>3.0.CO;2-Q

- Stellwagen NC, Stellwagen E. Effect of the matrix on DNA electrophoretic mobility. Journal of chromatography. A. 2009; 1216(10):1917-1929. DOI: https://doi.org/10.1016/j.chroma.2008.11.090

- Strutz K, Stellwagen NC. Do DNA Gel Electrophoretic Mobilities Extrapolate to the Free-Solution Mobility of DNA at Zero Gel Concentration? Electrophoresis. 1998; 19:635–642. DOI: https://doi.org/10.1002/elps.1150190504

- Stellwagen NC. Curved DNA molecules migrate anomalously slowly in polyacrylamide gels even at zero gel concentration. Electrophoresis. 2006; 27(5-6):1163-1168. DOI: https://doi.org/10.1002/elps.200500612

- Stellwagen NC. DNA mobility anomalies are determined primarily by polyacrylamide gel concentration, not gel pore size. Electrophoresis. 1997; 18(1):34-44. DOI: https://doi.org/10.1002/elps.1150180108

- Shapiro AL, Viñuela E, Maizel JV. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun.1967; 28:815-820. DOI: https://doi.org/10.1016/0006-291X(67)90391-9

- Westermeier R. Electrophoresis in practice: a guide to methods and applications of DNA and protein separations. John Wiley & Sons; 2016 May 16. DOI: https://doi.org/10.1002/9783527695188

- Westermeier R. Electrophoresis in practice: a guide to methods and applications of DNA and protein separations. John Wiley & Sons; 2006 Mar 6.

- Abu-Thabit NY. Thermochemistry of Acrylamide Polymerization: An Illustration of Auto-acceleration and Gel Effect. World. 2017 Apr 21; 5(3):94-101. DOI: https://doi.org/10.12691/wjce-5-3-3

- Cifuentes A, Canalejas P, Diez-Masa JC. Preparation of linear polyacrylamide-coated capillaries: study of the polymerization process and its effect on capillary electrophoresis performance. Journal of Chromatography A. 1999 Jan 15; 830(2):423-38. DOI: https://doi.org/10.1016/S0021-9673(98)00923-6

- Weber K, Osborn M. The reliability of molecular wight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1968; 244:4406-4412. DOI: https://doi.org/10.1016/S0021-9258(18)94333-4

- Davis BJ. Disc electrophoresis. Method and application to human serum proteins. Ann N Y Acad Sci. 1964; 121:404-427. DOI: https://doi.org/10.1111/j.1749-6632.1964.tb14213.x

- Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature.1970; 227:680-685. DOI: https://doi.org/10.1038/227680a0

- Schägger H, von Jagow, G. Tricine–sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1–100 kDalton. Anal. Biochem.1987; 166: 368–379. DOI: https://doi.org/10.1016/0003-2697(87)90587-2

- Panyim, S. and Chalkley, R. High resolution acrylamide gel electrophoresis of his-tones. Arch. Biochem. Biophys. 1969: 130, 337–346. DOI: https://doi.org/10.1016/0003-9861(69)90042-3

- Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 7.3, Identifying, Analyzing, and Sequencing Cloned DNA.Troubleshooting DNA agarose gel electrophoresis. Focus.1997; 19(3):66 (1997).

- Valones MA, Guimarães RL, Brandão LA, de Souza PR, de Albuquerque Tavares Carvalho A, Crovela S. Principles and applications of polymerase chain reaction in medical diagnostic fields: a review. Braz J Microbiol. 2009 Jan; 40(1):1-11. DOI: https://doi.org/10.1590/S1517-83822009000100001

- Troubleshooting DNA agarose gel electrophoresis. Focus.1997; 19(3):66 (1997).

- Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C. Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett. 2007; 7(9):2881‐2885. DOI: https://doi.org/10.1021/nl071615y

Downloads

Published

2022-04-18

How to Cite

Ammar Q. Muhammed, Nidhal K. Maraie, & Basma T. Al-Sudani. (2022). Efficacy of gel electrophoresis for proteins and biotechnological products –an overview. Al Mustansiriyah Journal of Pharmaceutical Sciences, 20(4), 45–56. https://doi.org/10.32947/ajps.v20i4.773