Aptamer Validation by Western Blot–an overview

Authors

  • Lamees Jamal Talib Central Teaching Hospital of Pediatric, Baghdad, Iraq
  • Basma Talib Al-Sudani Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
  • Mustafa Ghazi Al-Abbassi College of Pharmacy, Alkafeel University, Iraq

DOI:

https://doi.org/10.32947/ajps.v20i4.782

Abstract

Western blot is the main and basic technique in cellular and molecular biology. The principle of the western blot is the isolation and detection of the target molecule usually from a cellular extract. The whole process of western blot consists of three stages and can be described briefly as separation of

 

protein. followed by transportation to a solid membrane and finally detection of the target by an antibody. Western blot technique is usually used for the detection of proteins but also can be used to detect other molecules such as aptamers. Aptamers can be defined as a short-stranded DNA or RNA that bind with the target with high specificity and affinity. Aptamers highly resemble antibodies with many advantages. In this review, there is a focus on the aptamers that had validated by western blot technique other than other methods. This method has the advantage of   less time required, no antibodies needed, and introducing the possibility of multiplexing detection.

References

- Moore C. Introduction to western blotting. AbD serotec. 2009:4-20.

- Taylor SC, Posch A. The design of a quantitative western blot experiment. BioMed research international. 2014 Oct;2014. DOI: https://doi.org/10.1155/2014/361590

- Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences. 1979 Sep 1;76(9):4350-4. DOI: https://doi.org/10.1073/pnas.76.9.4350

- Dubitsky A, DeCollibus D, Ortolano GA. Sensitive fluorescent detection of protein on nylon membranes. Journal of Biochemical and Biophysical Methods. 2002 Mar 4;51(1):47-56. DOI: https://doi.org/10.1016/S0165-022X(01)00243-3

- Bordeaux J, Welsh AW, Agarwal S, Killiam E, Baquero MT, Hanna JA, Anagnostou VK, Rimm DL. Antibody validation. Biotechniques. 2010 Mar;48(3):197-209. DOI: https://doi.org/10.2144/000113382

- Hammond M, Kohn J, Oh K, Piatti P, Liu N. A method for greater reliability in Western blot loading controls—Stain-Free total protein quantitation. Bio-Rad Bulletin. 2013;6360.

- Taylor SC, Berkelman T, Yadav G, Hammond M. A defined methodology for reliable quantification of Western blot data. Molecular biotechnology. 2013 Nov 1;55(3):217-26. DOI: https://doi.org/10.1007/s12033-013-9672-6

- Mahmood T, Yang PC. Western blot: technique, theory, and trouble shooting. North American journal of medical sciences. 2012 Sep;4(9):429. DOI: https://doi.org/10.4103/1947-2714.100998

- Kurien BT, Scofield RH. Western blotting. Methods. 2006 Apr 1;38(4):283-93. DOI: https://doi.org/10.1016/j.ymeth.2005.11.007

- Cerchia L, De Franciscis V. Targeting cancer cells with nucleic acid aptamers. Trends in biotechnology. 2010 Oct 1;28(10):517-25. DOI: https://doi.org/10.1016/j.tibtech.2010.07.005

- Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, Kong L, Li Y, Pu C, Duan W. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics. 2015;5(1):23. DOI: https://doi.org/10.7150/thno.10202

- Song KM, Lee S, Ban C. Aptamers and their biological applications. Sensors. 2012 Jan;12(1):612-31.

- Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosensors and bioelectronics. 2015 Sep 15;71:230-42. DOI: https://doi.org/10.1016/j.bios.2015.04.041

- Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers chemistry: Chemical modifications and conjugation strategies. Molecules. 2020 Jan;25(1):3. DOI: https://doi.org/10.3390/molecules25010003

- Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. science. 1990 Aug 3;249(4968):505-10. DOI: https://doi.org/10.1126/science.2200121

- Shin S, Kim IH, Kang W, Yang JK, Hah SS. An alternative to Western blot analysis using RNA aptamer-functionalized quantum dots. Bioorganic & medicinal chemistry letters. 2010 Jun 1;20(11):3322-5. DOI: https://doi.org/10.1016/j.bmcl.2010.04.040

- Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. PROTEOMICS–Clinical Applications. 2012 Dec;6(11-12):563-73. DOI: https://doi.org/10.1002/prca.201200042

- Song KM, Lee S, Ban C. Aptamers and their biological applications. Sensors. 2012 Jan;12(1):612-31. DOI: https://doi.org/10.3390/s120100612

- Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Current medicinal chemistry. 2011 Sep 1;18(27):4206-14. DOI: https://doi.org/10.2174/092986711797189600

- Nahar N, Rashid RB, Rahman MS. Applications of Aptamers in Medicine: A Mini Review. Bangladesh Pharmaceutical Journal. 2017 Apr 5;20(1):99-104. DOI: https://doi.org/10.3329/bpj.v20i1.32099

- Pei X, Zhang JU, Liu JI. Clinical applications of nucleic acid aptamers in cancer. Molecular and clinical oncology. 2014 May 1;2(3):341-8. DOI: https://doi.org/10.3892/mco.2014.255

- Bruno JG, Sivils JC. Aptamer “Western” blotting for E. coli outer membrane proteins and key virulence factors in pathogenic E. coli serotypes. Aptamers and Synthetic Antibodies. 2016;2(1):29-35.

- Bosilevac JM, Koohmaraie M. Predicting the presence of non-O157 Shiga toxin-producing Escherichia coli in ground beef by using molecular tests for Shiga toxins, intimin, and O serogroups. Applied and environmental microbiology. 2012 Oct 1;78(19):7152-5. DOI: https://doi.org/10.1128/AEM.01508-12

- Bruno JG, Carrillo MP, Phillips T, Andrews CJ. A novel screening method for competitive FRET-aptamers applied to E. coli assay development. Journal of fluorescence. 2010 Nov 1;20(6):1211-23. DOI: https://doi.org/10.1007/s10895-010-0670-9

- Santos DO, Coutinho CE, Madeira MF, Bottino CG, Vieira RT, Nascimento SB, Bernardino A, Bourguignon SC, Corte-Real S, Pinho RT, Rodrigues CR. Leishmaniasis treatment—a challenge that remains: a review. Parasitology research. 2008 Jun 1;103(1):1-0. DOI: https://doi.org/10.1007/s00436-008-0943-2

- Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Research. 2017;6. DOI: https://doi.org/10.12688/f1000research.11120.1

- Elmahallawy EK, Martínez AS, Rodriguez-Granger J, Hoyos-Mallecot Y, Agil A, Mari JM, Fernández JG. Diagnosis of leishmaniasis. The Journal of Infection in Developing Countries. 2014 Aug 13;8(08):961-72. DOI: https://doi.org/10.3855/jidc.4310

- Martín ME, García-Hernández M, García-Recio EM, Gómez-Chacón GF, Sánchez-López M, González VM. DNA aptamers selectively target Leishmania infantum H2A protein. PLoS One. 2013 Oct 21;8(10):e78886. DOI: https://doi.org/10.1371/journal.pone.0078886

- Iborra S, Soto M, Carrión J, Alonso C, Requena JM. Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis. Vaccine. 2004 Sep 28;22(29-30):3865-76. DOI: https://doi.org/10.1016/j.vaccine.2004.04.015

- Soto M, Requena JM, Quijada L, Alonso C. Multicomponent chimeric antigen for serodiagnosis of canine visceral leishmaniasis. Journal of Clinical Microbiology. 1998 Jan 1;36(1):58-63. DOI: https://doi.org/10.1128/JCM.36.1.58-63.1998

- Moreno M, Gonzalez VM, Rincón E, Domingo A, Domínguez E. Aptasensor based on the selective electrodeposition of protein-linked gold nanoparticles on screen-printed electrodes. Analyst. 2011;136(9):1810-5. DOI: https://doi.org/10.1039/c1an15070g

- Ramos E, Pineiro D, Soto M, Abanades DR, Martín ME, Salinas M, González VM. A DNA aptamer population specifically detects Leishmania infantum H2A antigen. Laboratory investigation. 2007 May;87(5):409-16. DOI: https://doi.org/10.1038/labinvest.3700535

- Ramos E, Moreno M, Martín ME, Soto M, Gonzalez VM. In vitro selection of Leishmania infantum H3-binding ssDNA aptamers. Oligonucleotides. 2010 Aug 1;20(4):207-13. DOI: https://doi.org/10.1089/oli.2010.0240

- Mead S. Prion disease genetics. European Journal of Human Genetics. 2006 Mar;14(3):273-81. DOI: https://doi.org/10.1038/sj.ejhg.5201544

- Kübler E, Oesch B, Raeber AJ. Diagnosis of prion diseases. British medical bulletin. 2003 Jun 1;66(1):267-79. DOI: https://doi.org/10.1093/bmb/66.1.267

- White AR, Enever P, Tayebi M, Mushens R, Linehan J, Brandner S, Anstee D, Collinge J, Hawke S. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature. 2003 Mar;422(6927):80-3. DOI: https://doi.org/10.1038/nature01457

- Proske D, Gilch S, Wopfner F, Schätzl HM, Winnacker EL, Famulok M. Prion‐protein‐specific aptamer reduces PrPSc formation. Chembiochem. 2002 Aug 2;3(8):717-25. DOI: https://doi.org/10.1002/1439-7633(20020802)3:8<717::AID-CBIC717>3.0.CO;2-C

- Rhie A, Kirby L, Sayer N, Wellesley R, Disterer P, Sylvester I, Gill A, Hope J, James W, Tahiri-Alaoui A. Characterization of 2′-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. Journal of Biological Chemistry. 2003 Oct 10;278(41):39697-705. DOI: https://doi.org/10.1074/jbc.M305297200

- Gabus C, Auxilien S, Péchoux C, Dormont D, Swietnicki W, Morillas M, Surewicz W, Nandi P, Darlix JL. The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein. Journal of molecular biology. 2001 Apr 6;307(4):1011-21. DOI: https://doi.org/10.1006/jmbi.2001.4544

- Lima LM, Cordeiro Y, Tinoco LW, Marques AF, Oliveira CL, Sampath S, Kodali R, Choi G, Foguel D, Torriani I, Caughey B. Structural insights into the interaction between prion protein and nucleic acid. Biochemistry. 2006 Aug 1;45(30):9180-7. DOI: https://doi.org/10.1021/bi060532d

- Ogasawara D, Hasegawa H, Kaneko K, Sode K, Ikebukuro K. Screening of DNA aptamer against mouse prion protein by competitive selection. Prion. 2007 Oct 1;1(4):248-54. DOI: https://doi.org/10.4161/pri.1.4.5803

- Fang R, Blanton LS, Walker DH. Rickettsiae as emerging infectious agents. Clinics in Laboratory Medicine. 2017 Jun 1;37(2):383-400. DOI: https://doi.org/10.1016/j.cll.2017.01.009

- Bermúdez CS, Troyo A. A review of the genus Rickettsia in Central America. Research and reports in tropical medicine. 2018; 9:103. DOI: https://doi.org/10.2147/RRTM.S160951

- Kovacova E, Kazar J. Rickettsial diseases and their serological diagnosis. Clinical laboratory. 2000;46(5-6):239-45.

- Abolmaaty A, Gu W, Witkowsky R, Levin RE. The use of activated charcoal for the removal of PCR inhibitors from oyster samples. Journal of microbiological methods. 2007 Feb 1;68(2):349-52. DOI: https://doi.org/10.1016/j.mimet.2006.09.012

- Kim S, Labbe RG, Ryu S. Inhibitory effects of collagen on the PCR for detection of Clostridium perfringens. Applied and environmental microbiology. 2000 Mar 1;66(3):1213-5. DOI: https://doi.org/10.1128/AEM.66.3.1213-1215.2000

- Bruno JG, Chao CC, Zhang Z, Ching WM, Phillips T, Edge A, Sivils JC. Preliminary development of an enzyme-linked fluorescent DNA aptamer-magnetic bead sandwich assay for sensitive detection of Rickettsia cells. Aptamers and Synthetic Antibodies. 2016;2(1):1-2.

Downloads

Published

2022-04-18

How to Cite

Lamees Jamal Talib, Basma Talib Al-Sudani, & Mustafa Ghazi Al-Abbassi. (2022). Aptamer Validation by Western Blot–an overview. Al Mustansiriyah Journal of Pharmaceutical Sciences, 20(4), 122–131. https://doi.org/10.32947/ajps.v20i4.782