Nrf2 as a modulator of oxidative stress

Authors

  • Inam Sameh Arif Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University
  • Yassir Mustafa Kamal Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University
  • Israa Burhan Raoof Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University

DOI:

https://doi.org/10.32947/ajps.v21i4.798

Abstract

Nrf2 is active protein presents in the cytoplasm in the cells of the body. In the presence of an activators, Nrf2 can enter the nucleus which bind to Antioxidant Responses Elements (ARE) or otherwise named human ARE (hARE) which control the whole antioxidants activity in

human cell. Many factors may contribute to defective or overwhelmed cellular antioxidants activities for instances aging and cellular damages. These cellular damages can be produced by free radicals or oxidative stress. In the mechanism, if Nrf2 activated in the nucleus, can caused the production of collaborative antioxidants enzymes especially: catalase, glutathione (GLT) and superoxide dismutase (SOD) as a responsible for detoxification of free radical inside the cells.

References

- Moi P. Chan K. Asunis I. Cao A. Kan YW. Isolation of NF-E2-related factor 2 (NRF2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region . Proceedings of the National Academy of Sciences of the United States of America . 1994;91 (21): 9926 30. DOI: https://doi.org/10.1073/pnas.91.21.9926

- Gold R. Kappos L. Arnold DL. Bar-Or A. Giovannoni G. Selmaj K. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. The New England Journal of Medicine. 2012; 367 (12): 1098–107. DOI: https://doi.org/10.1056/NEJMoa1114287

- Abdul Muhaimen A. Monther F. Ayad k. Design, Synthesis, and Acute Anti-inflammatory Assessment of New 2-methyl Benzoimidazole Derivatives Having 4-Thiazolidinone Nucleus. Al Mustansiriyah Journal of Pharmaceutical Sciences, 2019;19(4):151-160. DOI: https://doi.org/10.32947/ajps.v19i4.646

- Noor W. Kadhim Al. Abbas M. Effect of human insulin and insulin analogue on some inflammatory markers and total antioxidant capacity in a sample of Iraqi type 1 diabetic children and adolescents. Al Mustansiriyah Journal of Pharmaceutical Sciences. 2021; 21(2):9-14 DOI: https://doi.org/10.32947/ajps.v21i2.804

- Israa B. Aseel G. diagnostic efficiency of Alpha Feto Protein, Hypothyroidism in Thalassemic patients with Liver Damage. Research J. Pharm. and Tech. 2019; 12(12): 5841-5844. DOI: https://doi.org/10.5958/0974-360X.2019.01012.6

- Gureev AP. Popov VN. Starkov AA. Crosstalk between the mTOR and Nrf2/ARE signaling pathways as a target in the improvement of long-term potentiation. Experimental Gerontology. 2020; 328: 113285. DOI: https://doi.org/10.1016/j.expneurol.2020.113285

- Zhu Y. Yang Q. Liu H. Chen W. "Phytochemical compounds targeting on Nrf2 for chemoprevention in colorectal cancer. European Journal of Pharmacology.2020; 887: 173588. DOI: https://doi.org/10.1016/j.ejphar.2020.173588

- Ahmed S. Luo L. Tang X. "Nrf2 signaling pathway: Pivotal roles in inflammation". Biochim Biophys Acta mol Basis disease. 2017; 1863 (2): 585–597. DOI: https://doi.org/10.1016/j.bbadis.2016.11.005

- He F. Ru X. Wen T. NRF2, a Transcription Factor for Stress Response and Beyond. International Journal of Molecular Sciences. 2020; 21 (13): 4777. DOI: https://doi.org/10.3390/ijms21134777

- Dodson M. de la Vega MR. Cholanians AB. Schmidlin CJ. Chapman E. Zhang DD. Modulating NRF2 in Disease: Timing Is Everything. Annual Review of Pharmacology and Toxicology. 2019; 59: 555–575. DOI: https://doi.org/10.1146/annurev-pharmtox-010818-021856

- Motohashi H. Katsuoka F. Engel JD. Yamamoto M. "Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101 (17): 6379–84. DOI: https://doi.org/10.1073/pnas.0305902101

- Motohashi H. Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine. 2004;10 (11): 549–57. DOI: https://doi.org/10.1016/j.molmed.2004.09.003

- Nioi P. Nguyen T. Sherratt PJ. Pickett CB. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation". Molecular and Cellular Biology. 2005;25 (24): 10895–906 DOI: https://doi.org/10.1128/MCB.25.24.10895-10906.2005

- McMahon M. Thomas N. Itoh K. Yamamoto M. Hayes JD. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron". The Journal of Biological Chemistry.2004; 279 (30): 31556–67. DOI: https://doi.org/10.1074/jbc.M403061200

- Chan JY. Cheung MC. Moi P. Chan K. Kan YW. Chromosomal localization of the human NF-E2 family of bZIP transcription factors by fluorescence in situ hybridization. Human Genetics. 1995;95 (3): 265–9. DOI: https://doi.org/10.1007/BF00225191

- Itoh K. Wakabayashi N. Katoh Y. Ishii T. Igarashi K. Engel JD. Yamamoto M. "Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development.1999; 13 (1): 76–86. DOI: https://doi.org/10.1101/gad.13.1.76

- Kobayashi A. Kang MI. Okawa H. Ohtsuji M. Zenke Y. Chiba T. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology.2004; 24 (16): 7130–9. DOI: https://doi.org/10.1128/MCB.24.16.7130-7139.2004

- Yamamoto T. Suzuki T. Kobayashi A. Wakabayashi J. Maher J. Motohashi H. Yamamoto M. "Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Molecular and Cellular Biology. 2008;28 (8): 2758–70. DOI: https://doi.org/10.1128/MCB.01704-07

- Sekhar KR. Rachakonda G. Freeman ML. Cysteine-based regulation of the CUL3 adaptor protein Keap1". Toxicology and Applied Pharmacology. 2010; 244 (1):216. DOI: https://doi.org/10.1016/j.taap.2009.06.016

- Itoh K. Chiba T. Takahashi S. Ishii T. Igarashi K. Katoh Y. et al. "An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements". Biochemical and Biophysical Research Communications. 1997; 236 (2): 313–22. DOI: https://doi.org/10.1006/bbrc.1997.6943

- Venugopal R. Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P) H: quinone oxidoreductase1 gene" Proceedings of the National Academy of Sciences of the United States of America. 1996; 93 (25): 14960–5. DOI: https://doi.org/10.1073/pnas.93.25.14960

- Solis WA. Dalton TP. Dieter MZ. Freshwater S. Harrer JM. He L. et al. Glutamate-cysteine ligase modifier subunit: mouse Gclm gene structure and regulation by agents that cause oxidative stress". Biochemical Pharmacology.2002; 63 (9): 1739–54. DOI: https://doi.org/10.1016/S0006-2952(02)00897-3

- Neumann CA. Cao J. Manevich Y Peroxiredoxin 1 and its role in cell signaling. Cell Cycle. 2009; 8 (24): 4072–8. . DOI: https://doi.org/10.4161/cc.8.24.10242

- Soriano FX. Baxter P. Murray LM. Sporn MB. Gillingwater TH. Hardingham GE. Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin. Molecules and Cells.2009; 27 (3): 279–82. DOI: https://doi.org/10.1007/s10059-009-0050-y

- Jarmi T. Agarwal A. "Heme oxygenase and renal disease. Current Hypertension Reports. 2009;11 (1): 56–62. DOI: https://doi.org/10.1007/s11906-009-0011-z

- Wang J. Doré S. "Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain. 2007;130: 1643–52. DOI: https://doi.org/10.1093/brain/awm095

- Hayes JD. Chanas SA. Henderson CJ. McMahon M. Sun C. Moffat GJ. et al. "The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochemical Society Transactions. 2000; 28 (2): 33–41. DOI: https://doi.org/10.1042/bst0280033

- Yueh MF. Tukey RH. "Nrf2-Keap1 signaling pathway regulates human UGT1A1 expression in vitro and in transgenic UGT1 mice. The Journal of Biological Chemistry. 2007;282 (12): 8749–58. . DOI: https://doi.org/10.1074/jbc.M610790200

- Maher JM. Dieter MZ. Aleksunes LM. Slitt AL. Guo G. Tanaka Y. et al. Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology.200; 46 (5): 1597–610. DOI: https://doi.org/10.1002/hep.21831

- Reisman SA. Csanaky IL. Aleksunes LM, Klaassen CD. Altered disposition of acetaminophen in Nrf2-null and Keap1-knockdown mice". Toxicological Sciences.2009; 109 (1): 31–40. DOI: https://doi.org/10.1093/toxsci/kfp047

- Lee OH. Jain AK. Papusha V. Jaiswal AK. . An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. The Journal of Biological Chemistry. 2007; 282 (50): 36412–20. DOI: https://doi.org/10.1074/jbc.M706517200

- Chorley BN. Campbell MR. Wang X. Karaca M. Sambandan D. Bangura F. et al. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Research. 2012; 40 (15): 7416–29. DOI: https://doi.org/10.1093/nar/gks409

- Tian Y. Liu Q. Yu S. Chu Q. Chen Y. Wu K. Wang L. NRF2-Driven KEAP1Transcription in Human Lung Cancer". Molecular Cancer Research. 2020;18 (10): 1465–1476. DOI: https://doi.org/10.1158/1541-7786.MCR-20-0108

- Gabriel P. David E. The sequence of disease-modifying therapies in relapsing multiple sclerosis: safety and immunologic considerations. J Neurol. 2017; 264(12): 2351–2374. DOI: https://doi.org/10.1007/s00415-017-8594-9

- Prince M. Li Y. Childers A. Itoh K. Yamamoto M. Kleiner HE. Comparison of citrus coumarins on carcinogen-detoxifying enzymes in Nrf2 knockout mice. Toxicology Letters. 2009;185 (3): 180–6. DOI: https://doi.org/10.1016/j.toxlet.2008.12.014

- Zhang Y. Gordon GB. A strategy for cancer prevention: stimulation of the Nrf2-ARE signaling pathway. Molecular Cancer Therapeutics. 2004;3 (7): 885–93. DOI: https://doi.org/10.1158/1535-7163.885.3.7

- Velayutham M. Villamena FA. Fishbein JC. Zweier JL. "Cancer chemopreventive oltipraz generates superoxide anion radical". Archives of Biochemistry and Biophysics. 2005;435 (1): 83–8. DOI: https://doi.org/10.1016/j.abb.2004.11.028

- DeNicola GM. Karreth FA. Humpton TJ. Gopinathan A. Wei C. Frese K. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011; 475 (7354): 106–9. DOI: https://doi.org/10.1038/nature10189

- Barajas B. Che N. Yin F. Rowshanrad A. Orozco LD. Gong KW. et al. NF-E2-related factor 2 promotes atherosclerosis by effects on plasma lipoproteins and cholesterol transport that overshadow antioxidant protection. Arteriosclerosis, Thrombosis, and Vascular Biology. 2011; 31 (1): 58–66. DOI: https://doi.org/10.1161/ATVBAHA.110.210906

- Araujo JA. Nrf2 and the promotion of atherosclerosis: lessons to be learned. Clin. Lipidol. 2012; 7 (2): 123–126. DOI: https://doi.org/10.2217/clp.12.5

Downloads

Published

2022-04-19

How to Cite

Inam Sameh Arif, Yassir Mustafa Kamal, & Israa Burhan Raoof. (2022). Nrf2 as a modulator of oxidative stress. Al Mustansiriyah Journal of Pharmaceutical Sciences, 21(4), 17–23. https://doi.org/10.32947/ajps.v21i4.798

Most read articles by the same author(s)