Oligonucleotides as a Novel Therapeutic Approach: An Innovative Area for Drug Delivery in Neurological Disorders

Authors

  • Yasir Qasim Almajidi Department of pharmacy, Baghdad College of Medical Sciences, Baghdad, Iraq
  • Rana Kadum Muslim Department of pharmacy, Baghdad College of Medical Sciences, Baghdad, Iraq
  • Yaseen T. khalf Department of pharmacy, Alfarabi University College

DOI:

https://doi.org/10.32947/ajps.v25i1.1065

Keywords:

Antisense Oligonucleotide, Neurodegenerative, Small interfering RNA, Micro RNA, Blood−brain barrier, Therapeutic responses

Abstract

RNA-based therapeutics have emerged as one of the most potent therapeutic options used for the modulation of gene/protein expression and gene editing with the potential to treat neurodegenerative diseases. However, the delivery of nucleic acids to the central nervous system (CNS) by the systemic route, remains a major hurdle.

To overcome this pitfall, this review focuses on oligonucleotide-based novel strategies including liposomes, carbon nanotubes, quantum dots, solid lipid nanoparticles, nano lipid carriers, polymeric nanoparticles, mesoporous silica, dendrimers, aptamers, nanobodies etc. These strategies are designed to overcome these barriers by different pathways and mechanisms of transport across the blood−brain barrier. Ongoing preclinical and clinical studies are assessing the safety and efficacy of Antisense Oligonucleotide) ASOs (in multiple genetic and acquired neurological conditions. The current review provides an update on novel approaches, preclinical, clinical evidence, and delivery route of ASOs. The administration of FDA-approved ASOs in neurological disorders is also described. The current evidence on the safety and efficacy of ASOs in brain diseases will help identify opportunities for a broader range of nucleic acids and accelerate the clinical translation of these innovative therapies.

References

1- W. Grabowska-Pyrzewicz, A. Want, J. Leszek, and U. Wojda, “Antisense oligonucleotides for Alzheimer’s disease therapy: from the mRNA to miRNA paradigm,” eBioMedicine, vol. 74, p. 103691, Dec. 2021, doi: 10.1016/j.ebiom.2021.103691.

2- D. Kim et al., “Graphene quantum dots prevent α -synucleinopathy in Parkinson’ s disease,” Nat. Nanotechnol., 2018, doi: 10.1038/s41565-018-0179-y.

3- S. Swarbrick, N. Wragg, S. Ghosh, and A. Stolzing, “Systematic Review of miRNA as Biomarkers in Alzheimer’s Disease,” Mol. Neurobiol., vol. 56, no. 9, pp. 6156–6167, Sep. 2019, doi: 10.1007/s12035-019-1500-y.

4- C.-J. Choong, K. Baba, and H. Mochizuki, “Gene therapy for neurological disorders,” Expert Opin. Biol. Ther., vol. 16, no. 2, pp. 143–159, Feb. 2016, doi: 10.1517/14712598.2016.1114096.

5- A. Tomitaka et al., “Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases,” Drug Discov. Today, vol. 24, no. 3, pp. 873–882, Mar. 2019, doi: 10.1016/j.drudis.2019.01.006.

6- C. F. Bennett, A. R. Krainer, and D. W. Cleveland, “Antisense Oligonucleotide Therapies for Neurodegenerative Diseases,” Annu. Rev. Neurosci., vol. 42, no. 1, pp. 385–406, Jul. 2019, doi: 10.1146/annurev-neuro-070918-050501.

7- V. Sardone, H. Zhou, F. Muntoni, A. Ferlini, and M. Falzarano, “Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease,” Molecules, vol. 22, no. 4, p. 563, Apr. 2017, doi: 10.3390/molecules22040563.

8- D. C. Henshall et al., “MicroRNAs in epilepsy: pathophysiology and clinical utility,” Lancet Neurol., vol. 15, no. 13, pp. 1368–1376, Dec. 2016, doi: 10.1016/S1474-4422(16)30246-0.

9- T. Hirunagi, K. Sahashi, K. G. Meilleur, and M. Katsuno, “Nucleic Acid-Based Therapeutic Approach for Spinal and Bulbar Muscular Atrophy and Related Neurological Disorders,” Genes, vol. 13, no. 1, p. 109, Jan. 2022, doi: 10.3390/genes13010109.

10- H. Gandhi, A. K. Sharma, S. Mahant, and D. N. Kapoor, “Recent advancements in brain tumor targeting using magnetic nanoparticles,” Ther. Deliv., vol. 11, no. 2, pp. 97–112, Feb. 2020, doi: 10.4155/tde-2019-0077.

11- F. Sonvico et al., “Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting,” Pharmaceutics, vol. 10, no. 1, p. 34, Mar. 2018, doi: 10.3390/pharmaceutics10010034.

12- A. Yu. Gerasimenko et al., “Interfaces Based on Laser-Structured Arrays of Carbon Nanotubes with Albumin for Electrical Stimulation of Heart Cell Growth,” Polymers, vol. 14, no. 9, p. 1866, May 2022, doi: 10.3390/polym14091866.

13- S. Grafals-ruiz, N.; Rios-vicil, C.I.; Lozada-delgado, E.L.; Quiñones-díaz, B.I.; Noriega-rivera, R.A.; Martínez-zayas, G.; Y., “Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma,” pp. 2809–2828, 2023.

14- H. Nsairat et al., “Lipid nanostructures for targeting brain cancer,” Heliyon, vol. 7, no. 9, p. e07994, Sep. 2021, doi: 10.1016/j.heliyon.2021.e07994.

15- E. Manek, F. Darvas, and G. A. Petroianu, “Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer’s Disease,” Molecules, vol. 25, no. 20, p. 4866, Oct. 2020, doi: 10.3390/molecules25204866.

16- K. Morihiro, Y. Kasahara, and S. Obika, “Biological applications of xeno nucleic acids,” Mol. Biosyst., vol. 13, no. 2, pp. 235–245, 2017, doi: 10.1039/C6MB00538A.

17- A. Bortolozzi, S. Manashirov, A. Chen, and F. Artigas, “Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson’s disease,” Pharmacol. Ther., vol. 227, p. 107873, Nov. 2021, doi: 10.1016/j.pharmthera.2021.107873.

18- H. S. Min et al., “Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucose‐Coated Polymeric Nanocarrier,” Angew. Chem. Int. Ed., vol. 59, no. 21, pp. 8173–8180, May 2020, doi: 10.1002/anie.201914751.

19- C. Rinaldi and M. J. A. Wood, “Antisense oligonucleotides: the next frontier for treatment of neurological disorders,” Nat. Rev. Neurol., vol. 14, no. 1, pp. 9–21, Jan. 2018, doi: 10.1038/nrneurol.2017.148.

20- H. Li, Y. Yang, W. Hong, M. Huang, M. Wu, and X. Zhao, “Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects,” Signal Transduct. Target. Ther., vol. 5, no. 1, p. 1, Jan. 2020, doi: 10.1038/s41392-019-0089-y.

21- D. Brenner, A. C. Ludolph, and J. H. Weishaupt, “Gene specific therapies – the next therapeutic milestone in neurology,” Neurol. Res. Pract., vol. 2, no. 1, p. 25, Dec. 2020, doi: 10.1186/s42466-020-00075-z.

22- J. F. Alterman et al., “A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system,” Nat. Biotechnol., vol. 37, no. 8, pp. 884–894, Aug. 2019, doi: 10.1038/s41587-019-0205-0.

23- M. J. Gomes, S. Martins, and B. Sarmento, “siRNA as a tool to improve the treatment of brain diseases: Mechanism, targets and delivery,” Ageing Res. Rev., vol. 21, pp. 43–54, May 2015, doi: 10.1016/j.arr.2015.03.001.

24- A. E. Aránega, E. Lozano‐velasco, L. Rodriguez‐outeiriño, F. Ramírez de Acuña, D. Franco, and F. Hernández‐torres, “Mirnas and muscle regeneration: Therapeutic targets in duchenne muscular dystrophy,” Int. J. Mol. Sci., vol. 22, no. 8, 2021, doi: 10.3390/ijms22084236.

25- M. H. Pourhanifeh et al., “Autophagy in cancers including brain tumors: role of MicroRNAs,” Cell Commun. Signal., vol. 18, no. 1, p. 88, Dec. 2020, doi: 10.1186/s12964-020-00587-w.

26- M. Fathi, S. Majidi, P. S. Zangabad, J. Barar, H. Erfan-Niya, and Y. Omidi, “Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer,” Med. Res. Rev., vol. 38, no. 6, pp. 2110–2136, Sep. 2018, doi: 10.1002/med.21506.

27- M. Barani, M. Mukhtar, A. Rahdar, G. Sargazi, A. Thysiadou, and G. Z. Kyzas, “Progress in the Application of Nanoparticles and Graphene as Drug Carriers and on the Diagnosis of Brain Infections,” Molecules, vol. 26, no. 1, p. 186, Jan. 2021, doi: 10.3390/molecules26010186.

28- ALTERMAN, Julia F., et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nature biotechnology , 2019, 37.8: 884-894. ‏

29- Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nature Reviews Genetics , 2015, 16.9: 543-552. ‏

30- X. Niu, J. Chen, and J. Gao, “Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances,” Asian J. Pharm. Sci., vol. 14, no. 5, pp. 480–496, Sep. 2019, doi: 10.1016/j.ajps.2018.09.005.

31- SARVESTANI, Fatemeh Sabet, et al. microRNAs in liver and kidney ischemia reperfusion injury: Insight to improve transplantation outcome. Biomedicine & Pharmacotherapy, 2021, 133: 110944.‏

32- M. Agrawal et al., “Biomaterials in treatment of Alzheimer’s disease,” Neurochem. Int., vol. 145, p. 105008, May 2021, doi: 10.1016/j.neuint.2021.105008.

33- BRENNAN, Gary P.; HENSHALL, David C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nature Reviews Neurology , 2020, 16.9: 506-519. ‏

34- M.-W. Seo and T.-E. Park, “Recent advances with liposomes as drug carriers for treatment of neurodegenerative diseases,” Biomed. Eng. Lett., vol. 11, no. 3, pp. 211–216, Aug. 2021, doi: 10.1007/s13534-021-00198-5.

35- X. Tian et al., “Bioactive Materials Recent advances in the development of nanomedicines for the treatment of ischemic stroke,” Bioact. Mater., vol. 6, no. 9, pp. 2854–2869, 2021, doi: 10.1016/j.bioactmat.2021.01.023.

36- M. K. Satapathy et al., “Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB,” Pharmaceutics, vol. 13, no. 8, p. 1183, Jul. 2021, doi: 10.3390/pharmaceutics13081183.

37- A. Khosa, S. Reddi, and R. N. Saha, “Nanostructured lipid carriers for site-specific drug delivery,” Biomed. Pharmacother., vol. 103, pp. 598–613, Jul. 2018, doi: 10.1016/j.biopha.2018.04.055.

38- C. Tapeinos, M. Battaglini, and G. Ciofani, “Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases,” J. Controlled Release, vol. 264, pp. 306–332, Oct. 2017, doi: 10.1016/j.jconrel.2017.08.033.

39- A. Ayub and S. Wettig, “An Overview of Nanotechnologies for Drug Delivery to the Brain,” Pharmaceutics, vol. 14, no. 2, p. 224, Jan. 2022, doi: 10.3390/pharmaceutics14020224.

40- C. Xiang, Y. Zhang, W. Guo, and X.-J. Liang, “Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication,” Acta Pharm. Sin. B, vol. 10, no. 2, pp. 239–248, Feb. 2020, doi: 10.1016/j.apsb.2019.11.003.

41- Henna, T.K.; Raphey, V.R.; Sankar, R.; Shirin, V.K.A.; Gangadharappa, H. V; Pramod, K, “Carbon nanostructures: the drug and the delivery system for brain disorders,” 2020.

42- JUHAIRIYAH, Firda; DE LANGE, Elizabeth CM. Understanding drug delivery to the brain using liposome-based strategies: Studies that provide mechanistic insights are essential. The AAPS Journal , 2021, 23: 1-16. ‏

43- X. Guo et al., “Multifunctional Selenium Quantum Dots for the Treatment of Alzheimer’s Disease by Reducing Aβ-Neurotoxicity and Oxidative Stress and Alleviate Neuroinflammation,” ACS Appl. Mater. Interfaces, vol. 13, no. 26, pp. 30261–30273, Jul. 2021, doi: 10.1021/acsami.1c00690.

44- S. Devi et al., “Quantum Dots: An Emerging Approach for Cancer Therapy,” Front. Mater., vol. 8, p. 798440, Jan. 2022, doi: 10.3389/fmats.2021.798440.

45- GASTALDI, Lucia, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87.3: 433-444.‏

46- M. Sadat, S. Gharbi, S. Jafarinejad-farsangi, and Z. Ansari-asl, “Toxicology in Vitro Secondary toxic e ff ect of graphene oxide and graphene quantum dots alters the expression of miR-21 and miR-29a in human cell lines,” Toxicol. In Vitro, vol. 65, no. February, p. 104796, 2020, doi: 10.1016/j.tiv.2020.104796.

47- Almajidi, Yasir Q.; Albadri, Ahmed A.; Jwaid, Mazen M.; and khalaf, Yaseen T. "Utilization of Semiconductor Nanocrystals In Cancer Diagnose And Treatment," Maaen Journal for Medical Sciences. 2023; 2 )4(, 137-146. https://doi.org/10.55810/2789-9136.1034

48- G. Perini, V. Palmieri, G. Ciasca, M. De Spirito, and M. Papi, “Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience,” Int. J. Mol. Sci., vol. 21, no. 10, p. 3712, May 2020, doi: 10.3390/ijms21103712.

49- KHAN, Namrah, et al. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. International Journal of Pharmaceutics, 2020, 577: 119033.‏

50- W. Chen, Y. Hu, and D. Ju, “Gene therapy for neurodegenerative disorders: advances, insights and prospects,” Acta Pharm. Sin. B, vol. 10, no. 8, pp. 1347–1359, Aug. 2020, doi: 10.1016/j.apsb.2020.01.015.

51- R. M. Lane et al., “Translating Antisense Technology into a Treatment for Huntington’s Disease,” in Huntington’s Disease, S. V. Precious, A. E. Rosser, and S. B. Dunnett, Eds., in Methods in Molecular Biology, vol. 1780. New York, NY: Springer New York, 2018, pp. 497–523. doi: 10.1007/978-1-4939-7825-0_23.

52- S. Naqvi, A. Panghal, and S. J. S. Flora, “Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs,” Front. Neurosci., vol. 14, p. 494, Jun. 2020, doi: 10.3389/fnins.2020.00494.

53- L. K. C. Lee, L. I. Leong, Y. Liu, M. Luo, H. Y. E. Chan, and C. H. J. Choi, “Preclinical Nanomedicines for Polyglutamine-Based Neurodegenerative Diseases,” Mol. Pharm., vol. 18, no. 2, pp. 610–626, Feb. 2021, doi: 10.1021/acs.molpharmaceut.0c00506.

54- Jayant, Rahul Dev, et al. Sustained-release nanoART formulation for the treatment of neuroAIDS. International journal of nanomedicine , 2015, 1077-1093. ‏

55- R. M. Kandell, L. E. Waggoner, and E. J. Kwon, “Nanomedicine for Acute Brain Injuries: Insight from Decades of Cancer Nanomedicine,” Mol. Pharm., vol. 18, no. 2, pp. 522–538, Feb. 2021, doi: 10.1021/acs.molpharmaceut.0c00287.

56- C. A. Stein and D. Castanotto, “FDA-Approved Oligonucleotide Therapies in 2017,” Mol. Ther., vol. 25, no. 5, pp. 1069–1075, May 2017, doi: 10.1016/j.ymthe.2017.03.023.

57- A. Salazar-ramiro et al., “Cytotoxicity induced by carbon nanotubes in experimental malignant glioma,” pp. 6005–6026, 2017.

58- MEHER, Jaya G., et al. Carbon nanotubes (CNTs): a novel drug delivery tool in brain tumor treatment. In: Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Academic Press, 2018. p. 375-396.‏

59- A. Kont, M. R. Aburto, J. F. Cryan, and C. M. O. Driscoll, “Advances in the Design of (Nano) Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System,” 2021, doi: 10.1021/acs.molpharmaceut.0c01238.

60- J. Yang, K. M. Luly, and J. J. Green, “Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications,” WIREs Nanomedicine Nanobiotechnology, vol. 15, no. 2, Mar. 2023, doi: 10.1002/wnan.1853.

61- CHAKRABORTY, Pratik, et al. Quantum dots: The cutting-edge nanotheranostics in brain cancer management. Journal of Controlled Release, 2022, 350: 698-715.‏

62- B. N. Singh, V. K. Gupta, J. Chen, and A. G. Atanasov, “Organic Combinatory Approaches for Gene Therapy,” Trends Biotechnol., vol. xx, pp. 1–3, doi: 10.1016/j.tibtech.2017.07.010.

63- ALBADRI, Ahmed A.; ABDULBAQI, Mustafa R.; ALMAJIDI, Yasir Q. Recent Trends in Chronopharmaceutics, Pulsatile Drug Delivery System. Al Mustansiriyah Journal of Pharmaceutical Sciences , 2019, 19.4: 41-49.

64- Z. Sezgin-bayindir, A. D. Ergin, M. Parmaksiz, A. E. Elcin, Y. M. Elcin, and N. Yuksel, “Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies,” J. Drug Deliv. Sci. Technol., vol. 36, pp. 120–129, Dec. 2016, doi: 10.1016/j.jddst.2016.10.003.

65- K. Sydow, H. Nikolenko, D. Lorenz, R. H. Müller, and M. Dathe, “Lipopeptide-based micellar and liposomal carriers: Influence of surface charge and particle size on cellular uptake into blood brain barrier cells,” Eur. J. Pharm. Biopharm., vol. 109, pp. 130–139, Dec. 2016, doi: 10.1016/j.ejpb.2016.09.019.

66- A. R. Rama et al., “Circular Sponge against miR-21 Enhances the Antitumor Activity of Doxorubicin against Breast Cancer Cells,” Int. J. Mol. Sci., vol. 23, no. 23, p. 14803, Nov. 2022, doi: 10.3390/ijms232314803.

67- X. Tan et al., “A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model,” Biomater. Sci., vol. 6, no. 2, pp. 407–417, 2018, doi: 10.1039/C7BM01088E.

68- L. Han et al., “Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials,” J. Controlled Release, vol. 259, pp. 40–52, Aug. 2017, doi: 10.1016/j.jconrel.2017.03.018.

69- Q. Ma, Y. Li, and X. Su, “Silica-nanobead-based sensors for analytical and bioanalytical applications,” TrAC Trends Anal. Chem., vol. 74, pp. 130–145, Dec. 2015, doi: 10.1016/j.trac.2015.06.006.

70- X. Tong, L. Ga, J. Ai, and Y. Wang, “Progress in cancer drug delivery based on AS1411 oriented nanomaterials,” pp. 1–36, 2022, doi: 10.1186/s12951-022-01240-z.

71- P. J. Bates, D. A. Laber, D. M. Miller, S. D. Thomas, and J. O. Trent, “Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer,” Exp. Mol. Pathol., vol. 86, no. 3, pp. 151–164, Jun. 2009, doi: 10.1016/j.yexmp.2009.01.004.

72- Y. Shen, B. Cao, N. R. Snyder, K. M. Woeppel, J. R. Eles, and X. T. Cui, “ROS responsive resveratrol delivery from LDLR peptide conjugated PLA ‑ coated mesoporous silica nanoparticles across the blood – brain barrier,” J. Nanobiotechnology, pp. 1–17, 2018, doi: 10.1186/s12951-018-0340-7.

73- ZAKARIA, Zulfirdaus, et al. A review of progressive advanced polymer nanohybrid membrane in fuel cell application. International Journal of Energy Research, 2020, 44.11: 8255-8295.‏

74- J. Wang, Z. Lu, M. G. Wientjes, and J. L. Au, “Delivery of siRNA Therapeutics : Barriers and Carriers,” vol. 12, no. 4, pp. 492–503, 2010, doi: 10.1208/s12248-010-9210-4.

75- J. Zhou and J. Rossi, “Aptamers as targeted therapeutics: current potential and challenges,” Nat. Publ. Group, 2016, doi: 10.1038/nrd.2016.199.

76- M. R. Dunn, R. M. Jimenez, and J. C. Chaput, “Analysis of aptamer discovery and technology”, doi: 10.1038/s41570017-0076.

77- L. Wan et al., “ce pt us cr t,” Expert Opin. Drug Deliv., vol. 0, no. 0, p. 1, 2019, doi: 10.1080/17425247.2019.1575808.

78- C. Lines, “Supporting Information”.

79- P. Amero, S. Khatua, and C. Rodriguez-aguayo, “Aptamers : Novel Therapeutics and Potential Role,” 2020.

80- A. Af et al., “The Discovery of RNA Aptamers that Selectively Bind Glioblastoma Stem Cells,” vol. 18, no. December, pp. 99–109, 2019, doi: 10.1016/j.omtn.2019.08.015.

81- MARAIE, Nidhal K.; ALMAJIDI, Yasser Qasim. Effect of different mucoadhesive polymers on release of ondansetron HCl from intranasal mucoadhesive in situ gel. Al Mustansiriyah Journal of Pharmaceutical Sciences , 2017, 17.2: 10-10. ‏.

82- F. Rahbarizadeh and D. Ahmadvand, “Nanobody ; an Old Concept,” pp. 299–338, 2011, doi: 10.3109/08820139.2010.542228.

83- S. Sadekar and H. Ghandehari, “Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery ☆,” Adv. Drug Deliv. Rev., vol. 64, no. 6, pp. 571–588, 2012, doi: 10.1016/j.addr.2011.09.010.

84- A. Sharma, J. E. Porterfield, E. Smith, S. Kannan, and R. M. Kannan, “PT,” J. Controlled Release, p. #pagerange#, 2018, doi: 10.1016/j.jconrel.2018.06.003.

85- A. Gothwal, K. N. Nakhate, A. Alexander, and U. Gupta, “Boosted Memory and Improved Brain Bio-availability of Rivastigmine: Targeting Effort to Brain using Covalently Tethered Lower Generation PAMAM Dendrimers with Lactoferrin,” 2018, doi: 10.1021/acs.molpharmaceut.8b00537.

86- GAURO, Rahul, et al. Advances in dendrimer-mediated targeted drug delivery to the brain. Journal of Nanoparticle Research, 2021, 23: 1-20. ‏

87- C. J. Choong, K. Baba, and H. Mochizuki, “Gene therapy for neurological disorders,” Expert Opin. Biol. Ther., vol. 16, no. 2, pp. 143–159, 2016, doi: 10.1517/14712598.2016.1114096.

88- A. Bortolozzi, S. Manashirov, A. Chen, and F. Artigas, “Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson’s disease,” Pharmacol. Ther., vol. 227, p. 107873, 2021, doi: 10.1016/j.pharmthera.2021.107873.

89- T. Hirunagi, K. Sahashi, K. G. Meilleur, and M. Katsuno, “Nucleic Acid-Based Therapeutic Approach for Spinal and Bulbar Muscular Atrophy and Related Neurological Disorders,” 2022.

90- M. H. Pourhanifeh, M. Mahjoubin-tehran, and M. R. Karimzadeh, “Autophagy in cancers including brain tumors: role of MicroRNAs,” pp. 1–22, 2020.

91- R. M. Kandell, L. E. Waggoner, and E. J. Kwon, “Nanomedicine for Acute Brain Injuries: Insight from Decades of Cancer Nanomedicine,” Mol. Pharm., vol. 18, no. 2, pp. 522–538, 2021, doi: 10.1021/acs.molpharmaceut.0c00287.

92- GOYENVALLE, Aurélie, et al. Considerations in the preclinical assessment of the safety of antisense oligonucleotides. Nucleic acid therapeutics, 2023, 33.1: 1-16. ‏

93- J. E. Zuckerman and M. E. Davis, “Clinical experiences with systemically administered siRNA-based therapeutics in cancer,” Nat. Rev. Drug Discov., vol. 14, no. 12, pp. 843–856, Dec. 2015, doi: 10.1038/nrd4685.

94- F. Alhamadani et al., “Adverse Drug Reactions and Toxicity of the Food and Drug Administration–Approved Antisense Oligonucleotide Drugs,” Drug Metab. Dispos., vol. 50, no. 6, pp. 879–887, Jun. 2022, doi: 10.1124/dmd.121.000418.

95- F. Alhakmani, S. A. Khan, and A. Ahmad, “Determination of total phenol, in-vitro antioxidant and anti-inflammatory activity of seeds and fruits of Zizyphus spina-christi grown in Oman,” Asian Pac. J. Trop. Biomed., vol. 4, pp. S656–S660, Jul. 2014, doi: 10.12980/APJTB.4.2014APJTB-2014-0273.

96- Y. Weng and Y. Huang, “The Advances of Biomacromolecule-based Nanomedicine in Brain Disease,” in Nanomedicine in Brain Diseases, X. Xue, Ed., Singapore: Springer Singapore, 2019, pp. 181–208. doi: 10.1007/978-981-13-8731-9_7.

97- M. C. P. Mendonça, A. Kont, M. R. Aburto, J. F. Cryan, and C. M. O’Driscoll, “Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System,” Mol. Pharm., vol. 18, no. 4, pp. 1491–1506, Apr. 2021, doi: 10.1021/acs.molpharmaceut.0c01238.

98- Astra Zeneca (last), “Eplontersen Met Co-Primary and Secondary Endpoints in Interim Analysis of the NEURO-TTRansform Phase III Trial for Hereditary Transthyretin-Mediated Amyloid Polyneuropathy (ATTRv-PN),” 2022, [Online]. Available: https://www.astrazeneca. com/media-centre/press-releases/2022/eplontersen-phase-iii-trial-met-co-primary-endpoints.html

99- J. Kim et al., “Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease,” N. Engl. J. Med., vol. 381, no. 17, pp. 1644–1652, Oct. 2019, doi: 10.1056/NEJMoa1813279.

100- M. Amanat, C. L. Nemeth, A. S. Fine, D. G. Leung, and A. Fatemi, “Antisense Oligonucleotide Therapy for the Nervous System: From Bench to Bedside with Emphasis on Pediatric Neurology,” Pharmaceutics, vol. 14, no. 11, p. 2389, Nov. 2022, doi: 10.3390/pharmaceutics14112389.

Downloads

Published

2025-01-14

How to Cite

Oligonucleotides as a Novel Therapeutic Approach: An Innovative Area for Drug Delivery in Neurological Disorders. (2025). Al Mustansiriyah Journal of Pharmaceutical Sciences, 25(1), 143-169. https://doi.org/10.32947/ajps.v25i1.1065

Similar Articles

1-10 of 220

You may also start an advanced similarity search for this article.