The possible techniques that used to improve the bioavailablity, pharmacological activity, solubility and permeability of anti-viral drugs: Insight for COVID-19 antiviral drugs

Authors

  • Ghassan Mudher Hashim College of Pharmacy, Mustansiriyah University, Department of Pharmaceutics
  • Ghaidaa S. Hameed College of Pharmacy, Mustansiriyah University, Department of Pharmaceutics
  • Dalya Basil Hanna College of Pharmacy, Mustansiriyah University, Department of Clinical Laboratory Sciences

DOI:

https://doi.org/10.32947/ajps.v23i3.1040

Keywords:

Favipravir, Curcumin, Covid-19, Co-amorphous, Solid dispersion

Abstract

In early March of 2020, the world was hit by a pandemic caused by the new SARS-COV-2 coronavirus dubbed by the WHO (World health organization) as COVID-19. More than two years later and a series of lockdowns

worldwide as a measure to combat the viral spread, had the world facing detrimental effects on health, economic and social fronts. The principal weapon in the worldwide fight against viruses such as corona virus illness in 2019 (COVID-19) is antiviral medicines (AvDs). Because of their low oral bioavailability and limited effectiveness owing to their low solubility/permeability, most AvDs need numerous doses, and their usage commonly results in drug resistance. Solving the issues with AvDs and improving their effectiveness might be aided by a better understanding of their in vivo metabolic and pharmacokinetic properties. In this review the AvDs, were systematically investigated regarding their cellular pharmacology, pharmacokinetics and pharmacodynamics. Additionally, delivery systems used for AvDs to achieve better pharmacology were reviewed. This review assumed that using sophisticated nanotechnology and the right administration routes, together with proper solid dispersion technology and nanosystems, may assist to obtain superior pharmacological activity and pharmacokinetic behavior of AvDs. Antiviral drugs (AvDs) that have been shown to bind to the SARS-CoV-2 receptor are promising candidates for treating COVID-19. These include ribavirin, remdesivir, favipiravir (FAV), chloroquine, lopinavir, and ritonavir.

References

- Khazaal, S.; Harb, J.; Rima, M.; Annweiler, C.; Wu, Y.; Cao, Z.; Abi Khattar, Z.; Legros, C.; Kovacic, H.; Fajloun, Z. The Pathophysiology of Long COVID throughout the Renin-Angiotensin System. Molecules 2022, 27 (9), 2903. DOI: https://doi.org/10.3390/molecules27092903

- Al-Hamamy, H. R., The impact of COVID-19 on healthy related issues, a structured review. Al-Kindy College Medical Journal 2021, 17 (3), 152-157. DOI: https://doi.org/10.47723/kcmj.v17i3.419

- Grasselli, G.; Cattaneo, E.; Florio, G., Secondary infections in critically ill patients with COVID-19. Critical Care 2021, 25 (1), 1-6. DOI: https://doi.org/10.1186/s13054-021-03672-9

- Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nature Reviews Microbiology. 2022;20(5):270-84. DOI: https://doi.org/10.1038/s41579-022-00713-0

- Faraj, A. M.; Qadir, S. A.; Mohammed, O. A.; Aziz, P. Y.; Alkhafaji, M.; Rahman, H. S.; Aziz, J. M. A.; Othman, H. H.; AL-Zubaidy, A. M. A. Current Potential Options for COVID-19 Treatment in Iraq-Kurdistan Region and the Rest of the World: A Mini-review. Iraqi Journal of Science 2022: 948-958. DOI: https://doi.org/10.24996/ijs.2022.63.3.4

- Mian, M. S.; Razaq, L.; Khan, S.; Hussain, N.; Razaq, M., Pathological Findings and Management of COVID-19 Patients: A Brief Overview of Modern-day Pandemic. Cureus 2020. 12 (5), e8136. DOI: https://doi.org/10.7759/cureus.8136

- Parasher, A., COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgraduate medical journal 2021, 97 (1147): 312-320. DOI: https://doi.org/10.1136/postgradmedj-2020-138577

- Huh, J.; Song, J. H.; Kim, S. R.; Cho, H. M.; Ko, H.-J.; Yang, H.; Sung, S. H. Lignan dimers from forsythia viridissima roots and their antiviral effects. Journal of natural products 2019. 82 (2): 232-238. DOI: https://doi.org/10.1021/acs.jnatprod.8b00590

- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M. B. P., Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy research 2018. 32 (12). 2323-2339. DOI: https://doi.org/10.1002/ptr.6178

- Oo, A.; Teoh, B. T.; Sam, S. S.; Bakar, S. A.; Zandi, K., Baicalein and baicalin as Zika virus inhibitors. Archives of virology 2019. 164 (2): 585-593. DOI: https://doi.org/10.1007/s00705-018-4083-4

- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research 2020. 30 (3): 269-271. DOI: https://doi.org/10.1038/s41422-020-0282-0

- Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C. E.; Ross, R.; Frydas, I.; Kritas, S. K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. Journal of biological regulators and homeostatic agents 2020. 34 (2): 327-331.

- Zhang, Z. J.; Morris‐Natschke, S. L.; Cheng, Y. Y.; Lee, K. H.; Li, R. T., Development of anti‐influenza agents from natural products. Medicinal research reviews 2020. 40 (6):2290-2338. DOI: https://doi.org/10.1002/med.21707

- Visser, L. J.; Aloise, C.; Swatek, K. N.; Medina, G. N.; Olek, K. M.; Rabouw, H. H.; de Groot, R. J.; Langereis, M. A.; de Los Santos, T.; Komander, D. Dissecting distinct proteolytic activities of FMDV Lpro implicates cleavage and degradation of RLR signaling proteins, not its deISGylase/DUB activity, in type I interferon suppression. PLoS pathogens 2020. 16 (7). e1008702. DOI: https://doi.org/10.1371/journal.ppat.1008702

- Tiwari, V.; Beer, J. C.; Sankaranarayanan, N. V.; Swanson-Mungerson, M.; Desai, U. R., Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discovery Today 2020. 25 (8):1535-1544. DOI: https://doi.org/10.1016/j.drudis.2020.06.017

- Sinokrot, H.; Smerat, T.; Najjar, A.; Karaman, R., Advanced prodrug strategies in nucleoside and non-nucleoside antiviral agents: A review of the recent five years. Molecules 2017. 22 (10). 1736.

- Gu, J.; Huang, Y.; Yan, Z.; He, D.; Zhang, Y.; Xu, J.; Li, Y.; Xie, X.; Xie, J.; Shi, D. Biomimetic membrane-structured nanovesicles carrying a supramolecular enzyme to cure lung cancer. ACS applied materials & interfaces 2020. 12 (28): 31112-31123. DOI: https://doi.org/10.1021/acsami.0c06207

- Yang, L.; Zhang, Y.; Xie, J.; Zhong, C.; He, D.; Wang, T.; Li, K.; Li, Y.; Shi, D.; Abagyan, R. Biomimetic polysaccharide-cloaked lipidic nanovesicles/ microassemblies for improving the enzymatic activity and prolonging the action time for hyperuricemia treatment. Nanoscale 2020. 12 (28): 15222-15235. DOI: https://doi.org/10.1039/D0NR02651D

- Chen, R.; Wang, T.; Song, J.; Pu, D.; He, D.; Li, J.; Yang, J.; Li, K.; Zhong, C.; Zhang, J., Antiviral drug delivery system for enhanced bioactivity, better metabolism and pharm-acokinetic characteristics. Interna-tional journal of nanomedicine 2021. 16. 4959. DOI: https://doi.org/10.2147/IJN.S315705

- Yang, J.; Li, K.; He, D.; Gu, J.; Xu, J.; Xie, J.; Zhang, M.; Liu, Y.; Tan, Q.; Zhang, J., Toward a better understanding of metabolic and pharmacokinetic characteristics of low-solubility, low-permeability natural medicines. Drug Metabolism Reviews 2020. 52 (1): 19-43. DOI: https://doi.org/10.1080/03602532.2020.1714646

- Seley-Radtke, K. L.; Yates, M. K., The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral research 2018. 154: 66-86. DOI: https://doi.org/10.1016/j.antiviral.2018.04.004

- Halling Folkmar Andersen, A.; Tolstrup, M., The potential of long-acting, tissue-targeted synthetic nanotherapy for delivery of antiviral therapy against HIV infection. Viruses 2020. 12 (4). 412. DOI: https://doi.org/10.3390/v12040412

- Prasse, C.; Wagner, M.; Schulz, R.; Ternes, T. A. Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products. Environmental science & technology 2012. 46 (4): 2169-2178. DOI: https://doi.org/10.1021/es203712z

- Murata, K.; Tsukuda, S.; Suizu, F.; Kimura, A.; Sugiyama, M.; Watashi, K.; Noguchi, M.; Mizokami, M. Immunomodulatory mechanism of acyclic nucleoside phosphates in treatment of hepatitis B virus infection. Hepatology (Baltimore, Md.) 2020. 71 (5):1533-1545. DOI: https://doi.org/10.1002/hep.30956

- Ray, A. S.; Vela, J. E.; Olson, L.; Fridland, A., Effective metabolism and long intracellular half life of the anti-hepatitis B agent adefovir in hepatic cells. Biochemical pharma-cology 2004. 68 (9): 1825-1831. DOI: https://doi.org/10.1016/j.bcp.2004.07.010

- Huchting, J.; Vanderlinden, E.; Van Berwaer, R.; Meier, C.; Naesens, L., Cell line-dependent activation and antiviral activity of T-1105, the non-fluorinated analogue of T-705 (favipiravir). Antiviral Research 2019. 167: 1-5. DOI: https://doi.org/10.1016/j.antiviral.2019.04.002

- Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016. 531 (7594): 381-385. DOI: https://doi.org/10.1038/nature17180

- Nayar, U.; Sadek, J.; Reichel, J.; Hernandez-Hopkins, D.; Akar, G.; Barelli, P. J.; Sahai, M. A.; Zhou, H.; Totonchy, J.; Jayabalan, D. Identification of a nucleoside analog active against adenosine kinase–expressing plasma cell malignancies. The Journal of clinical investigation 2017. 127 (6):2066-2080. DOI: https://doi.org/10.1172/JCI83936

- Qomara, W. F.; Primanissa, D. N.; Amalia, S. H.; Purwadi, F. V.; Zakiyah, N. Effectiveness of Remdesivir, Lopinavir/Ritonavir, and Favipiravir for COVID-19 treatment: a systematic review. International journal of general medicine 2021. 14. 8557. DOI: https://doi.org/10.2147/IJGM.S332458

- Volpe, D. A., Advances in cell-based permeability assays to screen drugs for intestinal absorption. Expert opinion on drug discovery 2020. 15 (5): 539-549. DOI: https://doi.org/10.1080/17460441.2020.1735347

- Babadi, D.; Dadashzadeh, S.; Osouli, M.; Daryabari, M. S.; Haeri, A., Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. Journal of Controlled Release 2020. 321: 669-709. DOI: https://doi.org/10.1016/j.jconrel.2020.02.041

- Gooch, J. W., Latent Solvent. In Encyclopedic Dictionary of Polymers, Gooch, J. W., Ed. Springer New York: New York, NY. 2011:pp 420-420. DOI: https://doi.org/10.1007/978-1-4419-6247-8_6796

- Conceição, J.; Adeoye, O.; Cabral-Marques, H. M.; Lobo, J. M. S., Cyclodextrins as excipients in tablet formulations. Drug discovery today 2018. 23 (6):1274-1284. DOI: https://doi.org/10.1016/j.drudis.2018.04.009

- Karakucuk, A.; Teksin, Z. S.; Eroglu, H.; Celebi, N., Evaluation of improved oral bioavailability of ritonavir nanosuspension. European Journal of Pharmaceutical Sciences 2019. 131: 153-158. DOI: https://doi.org/10.1016/j.ejps.2019.02.028

- Jacob, S.; Nair, A. B.; Shah, J., Emerging role of nanosuspensions in drug delivery systems. Biomaterials research 2020.24 (1): 1-16. DOI: https://doi.org/10.1186/s40824-020-0184-8

- Deshmukh, A.; Kulkarni, S., Solid self-microemulsifying drug delivery system of ritonavir. Drug develop-ment and industrial pharmacy 2014. 40 (4): 477-487. DOI: https://doi.org/10.3109/03639045.2013.768632

- Vithani, K.; Jannin, V.; Pouton, C. W.; Boyd, B. J., Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Advanced drug delivery reviews 2019. 142: 16-34. DOI: https://doi.org/10.1016/j.addr.2019.01.008

- Kubbinga, M.; Augustijns, P.; García, M. A.; Heinen, C.; Wortelboer, H. M.; Verwei, M.; Langguth, P. The effect of chitosan on the bioaccessibility and intestinal permeability of acyclovir. European Journal of Pharmaceutics and Biopharmaceutics 2019. 136: 147-155. DOI: https://doi.org/10.1016/j.ejpb.2019.01.021

- Wan, S.; He, D.; Yuan, Y.; Yan, Z.; Zhang, X.; Zhang, J., Chitosan-modified lipid nanovesicles for efficient systemic delivery of l-asparaginase. Colloids and Surfaces B: Biointerfaces 2016.143:278-284. DOI: https://doi.org/10.1016/j.colsurfb.2016.03.046

- Liu, R.; Liu, Z.; Zhang, C.; Zhang, B. Gelucire44/14 as a novel absorption enhancer for drugs with different hydrophilicities: in vitro and in vivo improvement on transcorneal permeation. Journal of pharmaceutical sciences 2011. 100 (8): 3186-3195. DOI: https://doi.org/10.1002/jps.22540

- Incecayir, T.; Sun, J.; Tsume, Y.; Xu, H.; Gose, T.; Nakanishi, T.; Tamai, I.; Hilfinger, J.; Lipka, E.; Amidon, G. L., Carrier-mediated prodrug uptake to improve the oral bioavailability of polar drugs: an application to an oseltamivir analogue. Journal of pharmaceutical sciences 2016. 105 (2):925-934. DOI: https://doi.org/10.1016/j.xphs.2015.11.036

- Gualdesi, M. S.; Briñón, M. C.; Quevedo, M. A. Intestinal permeability of lamivudine (3TC) and two novel 3TC prodrugs. Experimental and theoretical analyses. European journal of pharmaceutical sciences 2012. 47 (5):965-978. DOI: https://doi.org/10.1016/j.ejps.2012.10.002

- Zi, P.; Zhang, C.; Ju, C.; Su, Z.; Bao, Y.; Gao, J.; Sun, J.; Lu, J.; Zhang, C. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant-Soluplus. European Journal of Pharmaceutical Sciences 2019. 134: 233-245. DOI: https://doi.org/10.1016/j.ejps.2019.04.022

- Ahire, E.; Thakkar, S.; Darshanwad, M.; Misra, M. Parenteral nanosuspensions: a brief review from solubility enhancement to more novel and specific applications. Acta Pharmaceutica Sinica B 2018. 8 (5): 733-755. DOI: https://doi.org/10.1016/j.apsb.2018.07.011

- Varela-Garcia, A.; Concheiro, A.; Alvarez-Lorenzo, C. Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability. International Journal of Pharmaceutics 2018. 552 (1-2): 39-47. DOI: https://doi.org/10.1016/j.ijpharm.2018.09.053

- Lembo, D.; Donalisio, M.; Civra, A.; Argenziano, M.; Cavalli, R., Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery 2018.15 (1):93-114. DOI: https://doi.org/10.1080/17425247.2017.1360863

- Dhore, P. W.; Dave, V. S.; Saoji, S. D.; Bobde, Y. S.; Mack, C.; Raut, N. A. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions. Pharmaceutical develop-ment and technology 2017.22 (1): 90-102. DOI: https://doi.org/10.1080/10837450.2016.1193193

- Huang, Y.; Dai, W. G., Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta pharmaceutica Sinica. B 2014. 4 (1): 18-25. DOI: https://doi.org/10.1016/j.apsb.2013.11.001

- Sherman, E. M.; Steinberg, J. G., Heat-stable ritonavir tablets: a new formulation of a pharmacokinetic enhancer for HIV. Expert Opinion on Pharmacotherapy 2011. 12 (1): 141-148. DOI: https://doi.org/10.1517/14656566.2011.542151

- Jermain, S. V.; Brough, C.; Williams III, R. O., Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery–an update. International journal of pharmaceutics 2018. 535 (1-2): 379-392. DOI: https://doi.org/10.1016/j.ijpharm.2017.10.051

- Hung, I. F.-N.; Lung, K.-C.; Tso, E. Y.-K.; Liu, R.; Chung, T. W.-H.; Chu, M.-Y.; Ng, Y.-Y.; Lo, J.; Chan, J.; Tam, A. R., Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, random-ised, phase 2 trial. The Lancet 2020. 395 (10238):1695-1704.

- Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M. L.; Lescure, F.-X. Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine 2020.382 (24): 2327-2336. DOI: https://doi.org/10.1056/NEJMoa2007016

- Yamamura, H.; Matsuura, H.; Nakagawa, J.; Fukuoka, H.; Domi, H.; Chujoh, S. Effect of favipiravir and an anti-inflammatory strategy for COVID-19. Critical Care 2020. 24 (1): 1-3. DOI: https://doi.org/10.1186/s13054-020-03137-5

- Li, X.; Wang, Y.; Agostinis, P.; Rabson, A.; Melino, G.; Carafoli, E.; Shi, Y.; Sun, E. Is hydroxy-chloroquine beneficial for COVID-19 patients? Cell death & disease 2020. 11 (7): 1-6. DOI: https://doi.org/10.1038/s41419-020-2721-8

- Hazafa, A.; Ur-Rahman, K.; Haq, I.-u.-.; Jahan, N.; Mumtaz, M.; Farman, M.; Naeem, H.; Abbas, F.; Naeem, M.; Sadiqa, S. The broad-spectrum antiviral recommendations for drug discovery against COVID-19. Drug metabolism reviews 2020. 52 (3): 408-424. DOI: https://doi.org/10.1080/03602532.2020.1770782

- Khalili, J. S.; Zhu, H.; Mak, N. S. A.; Yan, Y.; Zhu, Y., Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID‐19. Journal of medical virology 2020.92 (7): 740-746. DOI: https://doi.org/10.1002/jmv.25798

- Gordon, C. J.; Tchesnokov, E. P.; Feng, J. Y.; Porter, D. P.; Götte, M., The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry 2020. 295 (15): 4773-4779. DOI: https://doi.org/10.1074/jbc.AC120.013056

- Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y., Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering 2020. 6 (10): 1192-1198. DOI: https://doi.org/10.1016/j.eng.2020.03.007

- Devaux, C. A.; Rolain, J.-M.; Colson, P.; Raoult, D., New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International journal of antimicrobial agents 2020. 55 (5): 105938. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105938

- Nutho, B.; Mahalapbutr, P.; Hengphasatporn, K.; Pattaranggoon, N. C.; Simanon, N.; Shigeta, Y.; Hannongbua, S.; Rungrotmongkol, T. Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry 2020. 59 (18): 1769-1779. DOI: https://doi.org/10.1021/acs.biochem.0c00160

- Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X., The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell discovery 2020. 6 (1): 1-5. DOI: https://doi.org/10.1038/s41421-020-0169-8

- Totura, A. L.; Bavari, S., Broad-spectrum coronavirus antiviral drug discovery. Expert opinion on drug discovery 2019. 14 (4):397-412. DOI: https://doi.org/10.1080/17460441.2019.1581171

- Sheahan, T. P.; Sims, A. C.; Graham, R. L.; Menachery, V. D.; Gralinski, L. E.; Case, J. B.; Leist, S. R.; Pyrc, K.; Feng, J. Y.; Trantcheva, I. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science translational medicine 2017. 9 (396). eaal3653. DOI: https://doi.org/10.1126/scitranslmed.aal3653

- Furuta, Y.; Komeno, T.; Nakamura, T., Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy, Series B 2017. 93 (7): 449-463. DOI: https://doi.org/10.2183/pjab.93.027

- Roldan, E. Q.; Biasiotto, G.; Magro, P.; Zanella, I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/ hydr-oxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacological research 2020.158.104904. DOI: https://doi.org/10.1016/j.phrs.2020.104904

- Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. Journal of Infection 2020. 81 (1): e1-e5. DOI: https://doi.org/10.1016/j.jinf.2020.03.002

- McKee, D. L.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C., Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacological research 2020. 157. 104859. DOI: https://doi.org/10.1016/j.phrs.2020.104859

- Liu, X.; Xu, Z.; Hou, C.; Wang, M.; Chen, X.; Lin, Q.; Song, R.; Lou, M.; Zhu, L.; Qiu, Y., Inhibition of hepatitis B virus replication by targeting ribonucleotide reductase M2 protein. Biochemical Pharmacology 2016. 103: 118-128. DOI: https://doi.org/10.1016/j.bcp.2016.01.003

- Wiemer, A. J.; Wiemer, D. F., Prodrugs of phosphonates and phosphates: crossing the membrane barrier. Phosphorus chemistry I 2014: 115-160. DOI: https://doi.org/10.1007/128_2014_561

- Charlton, M. R.; Alam, A.; Shukla, A.; Dashtseren, B.; Lesmana, C. R. A.; Duger, D.; Payawal, D. A.; Do Cuong, D.; Jargalsaikhan, G.; Cua, I. H. Y. An expert review on the use of tenofovir alafenamide for the treatment of chronic hepatitis B virus infection in Asia. Journal of gastroenterology 2020. 55 (9): 811-823. DOI: https://doi.org/10.1007/s00535-020-01698-4

- Zannella, A.; Marignani, M.; Begini, P., Hematological malignancies and hbv reactivation risk: suggestions for clinical management. Viruses 2019. 11 (9): 858. DOI: https://doi.org/10.3390/v11090858

- Morandi, E.; Tanasescu, R.; Tarlinton, R. E.; Constantin-Teodosiu, D.; Gran, B., Do antiretroviral drugs protect from multiple sclerosis by inhibiting expression of MS-associated retrovirus? Frontiers in immunology 2019. 9. 3092. DOI: https://doi.org/10.3389/fimmu.2018.03092

- Quercia, R.; Perno, C.-F.; Koteff, J.; Moore, K.; McCoig, C.; Clair, M. S.; Kuritzkes, D. Twenty-five years of lamivudine: current and future use for the treatment of HIV-1 infection. Journal of acquired immune deficiency syndromes (1999) 2018. 78 (2). 125. DOI: https://doi.org/10.1097/QAI.0000000000001660

- Fischl, M. A.; Richman, D. D.; Hansen, N.; Collier, A. C.; Carey, J. T.; Para, M. F.; Hardy, W. D.; Dolin, R.; Powderly, W. G.; Allan, J. D. The safety and efficacy of zidovudine (AZT) in the treatment of subjects with mildly symptomatic human immunodeficiency virus type 1 (HIV) infection: a double-blind, placebo-controlled trial. Annals of internal medicine 1990. 112 (10): 727-737. DOI: https://doi.org/10.7326/0003-4819-112-10-727

- Yan, D.; Liu, X.-Y.; Zhu, Y.-n.; Huang, L.; Dan, B.-t.; Zhang, G.-j.; Gao, Y.-h., Factors associated with prolonged viral shedding and impact of lopinavir/ritonavir treatment in hospitalised non-critically ill patients with SARS-CoV-2 infection. European Respiratory Journal 2020. 56 (1): 2000799. DOI: https://doi.org/10.1183/13993003.00799-2020

- Sheahan, T. P.; Sims, A. C.; Leist, S. R.; Schäfer, A.; Won, J.; Brown, A. J.; Montgomery, S. A.; Hogg, A.; Babusis, D.; Clarke, M. O.; Spahn, J. E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J. Y.; Cihlar, T.; Jordan, R.; Denison, M. R.; Baric, R. S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications 2020. 11 (1):222. DOI: https://doi.org/10.1038/s41467-019-13940-6

- Chan, J. F.-W.; Yao, Y.; Yeung, M.-L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; Cai, J.-P.; Chu, H.; Zhou, J.; Chen, H.; Qin, C.; Yuen, K.-Y. Treatment With Lopinavir/Ritonavir or Interferon-β1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset. The Journal of Infectious Diseases 2015. 212 (12): 1904-1913. DOI: https://doi.org/10.1093/infdis/jiv392

- Lecronier, M.; Beurton, A.; Burrel, S.; Haudebourg, L.; Deleris, R.; Le Marec, J.; Virolle, S.; Nemlaghi, S.; Bureau, C.; Mora, P.; De Sarcus, M.; Clovet, O.; Duceau, B.; Grisot, P. H.; Pari, M. H.; Arzoine, J.; Clarac, U.; Boutolleau, D.; Raux, M.; Delemazure, J.; Faure, M.; Decavele, M.; Morawiec, E.; Mayaux, J.; Demoule, A.; Dres, M. Comparison of hydroxychloroquine, lopinavir/ ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis. Critical care (London, England) 2020. 24 (1).418. DOI: https://doi.org/10.1186/s13054-020-03117-9

- Jang, Y.; Shin, J. S.; Yoon, Y. S.; Go, Y. Y.; Lee, H. W.; Kwon, O. S.; Park, S.; Park, M. S.; Kim, M. Salinomycin Inhibits Influenza Virus Infection by Disrupting Endosomal Acidification and Viral Matrix Protein 2 Function. Journal of virology 2018. 92 (24). DOI: https://doi.org/10.1128/JVI.01441-18

- Wang, P.-C.; Chiu, D.-C.; Jan, J.-T.; Huang, W.-I.; Tseng, Y.-C.; Li, T.-T.; Cheng, T.-J.; Tsai, K.-C.; Fang, J.-M. Peramivir conjugates as orally available agents against influenza H275Y mutant. European Journal of Medicinal Chemistry 2018. 145: 224-234. DOI: https://doi.org/10.1016/j.ejmech.2017.12.072

- Neri-Bazán, R. M.; García-Machorro, J.; Méndez-Luna, D.; Tolentino-López, L. E.; Martínez-Ramos, F.; Padilla, M., II; Aguilar-Faisal, L.; Soriano-Ursúa, M. A.; Trujillo-Ferrara, J. G.; Fragoso-Vázquez, M. J.; Barrón, B. L.; Correa-Basurto, J. Design, in silico studies, synthesis and in vitro evaluation of oseltamivir derivatives as inhibitors of neuraminidase from influenza A virus H1N1. Eur J Med Chem 2017. 128: 154-167. DOI: https://doi.org/10.1016/j.ejmech.2017.01.039

- Michaelis, M.; Kleinschmidt, M. C.; Bojkova, D.; Rabenau, H. F.; Wass, M. N.; Cinatl, J., Jr. Omeprazole Increases the Efficacy of Acyclovir Against Herpes Simplex Virus Type 1 and 2. Frontiers in microbiology 2019. 10. 2790. DOI: https://doi.org/10.3389/fmicb.2019.02790

- Abd-Rabou, A. A.; Bharali, D. J.; Mousa, S. A., Viramidine-Loaded Galactosylated Nanoparticles Induce Hepatic Cancer Cell Apoptosis and Inhibit Angiogenesis. Applied biochemistry and biotechnology 2020. 190 (1): 305-324. DOI: https://doi.org/10.1007/s12010-019-03090-2

- Patel, B. K.; Parikh, R. H.; Patel, N., Targeted delivery of mannosylated-PLGA nanoparticles of antiretroviral drug to brain. International journal of nanomedicine 2018, 13 (T-NANO 2014 Abstracts): 97-100. DOI: https://doi.org/10.2147/IJN.S124692

- Zhong, J.; Xia, Y.; Hua, L.; Liu, X.; Xiao, M.; Xu, T.; Zhu, B.; Cao, H. Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model. Artificial cells, nanomedicine, and biotechnology 2019. 47 (1): 3485-3491. DOI: https://doi.org/10.1080/21691401.2019.1640716

- Joshy, K. S.; Susan, M. A.; Snigdha, S.; Nandakumar, K.; Laly, A. P.; Sabu, T., Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery. International journal of biological macromolecules 2018. 107 (Pt A): 929-937. DOI: https://doi.org/10.1016/j.ijbiomac.2017.09.078

- Yadavalli, T.; Ames, J.; Agelidis, A.; Suryawanshi, R.; Jaishankar, D.; Hopkins, J.; Thakkar, N.; Koujah, L.; Shukla, D. Drug-encapsulated carbon (DECON): A novel platform for enhanced drug delivery. Science advances 2019. 5 (8). eaax0780. DOI: https://doi.org/10.1126/sciadv.aax0780

- Levy, G. A.; Adamson, G.; Phillips, M. J.; Scrocchi, L. A.; Fung, L.; Biessels, P.; Ng, N. F.; Ghanekar, A.; Rowe, A.; Ma, M. X.; Levy, A.; Koscik, C.; He, W.; Gorczynski, R.; Brookes, S.; Woods, C.; McGilvray, I. D.; Bell, D. Targeted delivery of ribavirin improves outcome of murine viral fulminant hepatitis via enhanced anti-viral activity. Hepatology (Baltimore, Md.) 2006. 43 (3):581-91. DOI: https://doi.org/10.1002/hep.21072

- Ali, M. K.; Moshikur, R. M.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Biocompatible Ionic Liquid-Mediated Micelles for Enhanced Transdermal Delivery of Paclitaxel. ACS Applied Materials & Interfaces 2021. 13 (17): 19745-19755. DOI: https://doi.org/10.1021/acsami.1c03111

- Moshikur, R. M.; Chowdhury, M. R.; Moniruzzaman, M.; Goto, M., Biocompatible ionic liquids and their applications in pharmaceutics. Green Chemistry 2020. 22 (23): 8116-8139. DOI: https://doi.org/10.1039/D0GC02387F

- Tahara, Y.; Morita, K.; Wakabayashi, R.; Kamiya, N.; Goto, M. Biocompatible Ionic Liquid Enhances Transdermal Antigen Peptide Delivery and Preventive Vaccination Effect. Molecular Pharmaceutics 2020. 17 (10): 3845-3856. DOI: https://doi.org/10.1021/acs.molpharmaceut.0c00598

- Wang, C.; Chopade, S. A.; Guo, Y.; Early, J. T.; Tang, B.; Wang, E.; Hillmyer, M. A.; Lodge, T. P.; Sun, C. C. Preparation, Characterization, and Formulation Development of Drug–Drug Protic Ionic Liquids of Diphenhydramine with Ibuprofen and Naproxen. Molecular Pharmaceutics 2018. 15 (9): 4190-4201. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00569

- Moshikur, R. M.; Chowdhury, M. R.; Wakabayashi, R.; Tahara, Y.; Kamiya, N.; Moniruzzaman, M.; Goto, M. Ionic liquids with N-methyl-2-pyrrolidonium cation as an enhancer for topical drug delivery: Synthesis, characterization, and skin-penetration evaluation. Journal of Molecular Liquids 2020. 299: 112166. DOI: https://doi.org/10.1016/j.molliq.2019.112166

- Moshikur, R. M.; Ali, M. K.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Favipiravir-Based Ionic Liquids as Potent Antiviral Drugs for Oral Delivery: Synthesis, Solubility, and Pharmacokinetic Evaluation. Molecular Pharmaceutics 2021. 18 (8): 3108-3115. DOI: https://doi.org/10.1021/acs.molpharmaceut.1c00324

- Sun, C. C., A classification system for tableting behaviors of binary powder mixtures. Asian Journal of Pharmaceutical Sciences 2016. 11 (4): 486-491. DOI: https://doi.org/10.1016/j.ajps.2015.11.122

- Wang, X.; Wang, L.; Yao, C.; Xie, G.; Song, S.; Li, H.; Qu, Y.; Tao, X., Novel Formulations of the Antiviral Drug Favipiravir: Improving Permeability and Tabletability. Crystal Growth & Design 2021. 21 (7): 3807-3817. DOI: https://doi.org/10.1021/acs.cgd.1c00150

- Giesler, K. E.; Marengo, J.; Liotta, D. C.Reduction Sensitive Lipid Conjugates of Tenofovir: Synthesis, Stability, and Antiviral Activity. J Med Chem 2016. 59 (15):7097-110. DOI: https://doi.org/10.1021/acs.jmedchem.6b00428

- Solórzano, R.; Tort, O.; García-Pardo, J.; Escribà, T.; Lorenzo, J.; Arnedo, M.; Ruiz-Molina, D.; Alibés, R.; Busqué, F.; Novio, F. Versatile iron-catechol-based nanoscale coordination polymers with antiretroviral ligand functionalization and their use as efficient carriers in HIV/AIDS therapy. Biomaterials science 2018. 7 (1): 178-186. DOI: https://doi.org/10.1039/C8BM01221K

- Abdelbary, G. A.; Amin, M. M.; Zakaria, M. Y.; El Awdan, S. A., Adefovir dipivoxil loaded proliposomal powders with improved hepatoprotective activity: formulation, optimization, pharma-cokinetic, and biodistribution studies. Journal of liposome research 2018. 28 (4): 259-274. DOI: https://doi.org/10.1080/08982104.2017.1363228

- Gourdon, B.; Chemin, C.; Moreau, A.; Arnauld, T.; Baumy, P.; Cisternino, S.; Péan, J. M.; Declèves, X., Functionalized PLA-PEG nanopa-rticles targeting intestinal transporter PepT1 for oral delivery of acyclovir. Int J Pharm 2017. 529 (1-2): 357-370. DOI: https://doi.org/10.1016/j.ijpharm.2017.07.024

- Mao, Y.; Feng, S.; Li, S.; Zhao, Q.; Di, D.; Liu, Y.; Wang, S., Chylomicron-pretended nano-bio self-assembling vehicle to promote lymphatic transport and GALTs target of oral drugs. Biomaterials 2019.188: 173-186. DOI: https://doi.org/10.1016/j.biomaterials.2018.10.012

- Islam, M. S.; Reineke, J.; Kaushik, R.; Woyengo, T.; Baride, A.; Alqahtani, M. S.; Perumal, O., Bioadhesive Food Protein Nanoparticles as Pediatric Oral Drug Delivery System. ACS Applied Materials & Interfaces 2019. 11 (20): 18062-18073. DOI: https://doi.org/10.1021/acsami.9b00152

- Joshi, G.; Kumar, A.; Sawant, K., Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles. Drug delivery 2016. 23 (9): 3492-3504. DOI: https://doi.org/10.1080/10717544.2016.1199605

- Ravi, P. R.; Vats, R.; Balija, J.; Adapa, S. P.; Aditya, N., Modified pullulan nanoparticles for oral delivery of lopinavir: formulation and pharmacokinetic evaluation. Carbohy-drate polymers 2014. 110: 320-8. DOI: https://doi.org/10.1016/j.carbpol.2014.03.099

- Rautio, J.; Meanwell, N. A.; Di, L.; Hageman, M. J., The expanding role of prodrugs in contemporary drug design and development. Nature reviews. Drug discovery 2018.17 (8): 559-587. DOI: https://doi.org/10.1038/nrd.2018.46

- Sinokrot, H.; Smerat, T.; Najjar, A.; Karaman, R. Advanced Prodrug Strategies in Nucleoside and Non-Nucleoside Antiviral Agents: A Review of the Recent Five Years. 2017. 22 (10). DOI: https://doi.org/10.3390/molecules22101736

- Dalpiaz, A.; Fogagnolo, M.; Ferraro, L.; Beggiato, S.; Hanuskova, M.; Maretti, E.; Sacchetti, F.; Leo, E.; Pavan, B. Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery. Eur J Pharm Biopharm 2019. 144: 91-100. DOI: https://doi.org/10.1016/j.ejpb.2019.09.008

- Ho, M. J.; Lee, D. R.; Im, S. H.; Yoon, J. A.; Shin, C. Y.; Kim, H. J.; Jang, S. W.; Choi, Y. W.; Han, Y. T.; Kang, M. J. Microsuspension of fatty acid esters of entecavir for parenteral sustained delivery. Int J Pharm 2018. 543 (1-2):52-59. DOI: https://doi.org/10.1016/j.ijpharm.2018.03.042

- Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatm-ent of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2020. 71 (15):732-739. DOI: https://doi.org/10.1093/cid/ciaa237

- Zhong, M.; Feng, Y.; Liao, H.; Hu, X.; Wan, S.; Zhu, B.; Zhang, M.; Xiong, H.; Zhou, Y.; Zhang, J. Azithromycin cationic non-lecithoid nano/microparticles improve bioavail-ability and targeting efficiency. Pharmaceutical research 2014. 31 (10): 2857-67. DOI: https://doi.org/10.1007/s11095-014-1382-7

- Giuliani, A.; Balducci, A. G.; Zironi, E.; Colombo, G.; Bortolotti, F.; Lorenzini, L.; Galligioni, V.; Pagliuca, G.; Scagliarini, A.; Calzà, L.; Sonvico, F. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglom-erates. 2018. 25 (1): 376-387. DOI: https://doi.org/10.1080/10717544.2018.1428242

- Djekic, L.; Janković, J.; Rašković, A.; Primorac, M., Semisolid self-microemulsifying drug delivery systems (SMEDDSs): Effects on pharmacokinetics of acyclovir in rats. Eur J Pharm Sci 2018. 121: 287-292. DOI: https://doi.org/10.1016/j.ejps.2018.06.005

- Shin, J. S.; Ku, K. B.; Jang, Y.; Yoon, Y. S.; Shin, D.; Kwon, O. S.; Go, Y. Y.; Kim, S. S.; Bae, M. A.; Kim, M. Comparison of anti-influenza virus activity and pharmacokinetics of oseltamivir free base and oseltamivir phosphate. Journal of microbiology (Seoul, Korea) 2017. 55 (12): 979-983. DOI: https://doi.org/10.1007/s12275-017-7371-x

- Lei, M.; Gan, W.; Sun, Y., HPLC-MS/MS analysis of peramivir in rat plasma: Elimination of matrix effect using the phospholipid-removal solid-phase extrac-tion method. 2018. 32 (3). DOI: https://doi.org/10.1002/bmc.4103

Downloads

Published

2023-07-20

How to Cite

Ghassan Mudher Hashim, Ghaidaa S. Hameed, & Dalya Basil Hanna. (2023). The possible techniques that used to improve the bioavailablity, pharmacological activity, solubility and permeability of anti-viral drugs: Insight for COVID-19 antiviral drugs . Al Mustansiriyah Journal of Pharmaceutical Sciences, 23(3), 231–249. https://doi.org/10.32947/ajps.v23i3.1040