Nano-carriers as a Selective Treatment for Cancer

Authors

  • Ghaidaa S. Hameed Department of pharmaceutics , College of pharmacy, Mustansiriyah University, Baghdad, Iraq
  • Methaq Hamad Sabar Department of pharmaceutics , College of pharmacy, Mustansiriyah University, Baghdad, Iraq

DOI:

https://doi.org/10.32947/ajps.v21i1.802

Keywords:

Oncology, Micelles, Nanoparticles, Cancer treatment, Nano-carriers

Abstract

Among many therapeutic treatments for cancer, nano-carriers are the focus of our review to illustrate the update usage of this drug delivery approach, the most likely side effects and the reality of their potential application with minimum adverse effects. Here, we demonstrate the types of these nano-carriers based on

their nature with detailed recent studies about their use. The variation in the skeleton of these nanoparticles enable the selection of the suitable type with higher specifications than others.  However, the poor in vivo testing is the main stumbling block for completion of their manufacturing. This review will help the researchers to find the road map for further investigation to finally aid the pharmaceutical companies in manufacturing these nano-carriers in appropriate dosage forms to save the life of millions of people in the world.   

References

- Arranja, A.G., et al., Tumor-targeted nanomedicines for cancer theranostics. Pharmacological research, 2017. 115: p. 87-95. DOI: https://doi.org/10.1016/j.phrs.2016.11.014

- Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology, 2007. 2(12): p. 751. DOI: https://doi.org/10.1038/nnano.2007.387

- Klochkov, S.G., et al. Implications of nanotechnology for the treatment of cancer: Recent advances. in Seminars in cancer biology. 2019. Elsevier.

- Al-Tamimi, D.J., et al., Therapeutic Drug Monitoring of Cyclosporine Using Single Sampling Strategy. Al-Mustansiriyah Journal of Pharmaceutical Sciences (AJPS), 2020. 20(2): p. 55-63. DOI: https://doi.org/10.32947/ajps.v20i2.702

- Kumari, P., B. Ghosh, and S. Biswas, Nanocarriers for cancer-targeted drug delivery. Journal of drug targeting, 2016. 24(3): p. 179-191. DOI: https://doi.org/10.3109/1061186X.2015.1051049

- Al-Saigh, T.H., et al., Breast Cancer in Mosul: A Survival Analysis. Al-Mustansiriyah Journal for Pharmaceutical Sciences, 2020. 20(2): p. 31-36. DOI: https://doi.org/10.32947/ajps.v20i2.695

- Mura, S., et al., Lipid prodrug nanocarriers in cancer therapy. Journal of controlled release, 2015. 208: p. 25-41. DOI: https://doi.org/10.1016/j.jconrel.2015.01.021

- Mozafari, M., et al., Role of nanocarrier systems in cancer nanotherapy. Journal of liposome research, 2009. 19(4): p. 310-321. DOI: https://doi.org/10.3109/08982100902913204

- Valetti, S., et al., Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. Journal of nanobiotechnology, 2013. 11(1): p. S6. DOI: https://doi.org/10.1186/1477-3155-11-S1-S6

- Ozpolat, B., A.K. Sood, and G. Lopez-Berestein, Liposomal siRNA nanocarriers for cancer therapy. Advanced drug delivery reviews, 2014. 66: p. 110-116. DOI: https://doi.org/10.1016/j.addr.2013.12.008

- Liu, D. and N. Zhang, Cancer chemotherapy with lipid-based nanocarriers. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2010. 27(5). DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i5.10

- Ismail, R., Quality by design driven development of polymeric and lipid-based nanocarriers as potential systems for oral delivery of glp-1 analogues. 2020, szte.

- Cano, A., M. Espina, and M.L. García, Recent Advances on Antitumor Agents-loaded Polymeric and Lipid-based Nanocarriers for the Treatment of Brain Cancer. Current Pharmaceutical Design, 2020. 26(12): p. 1316-1330. DOI: https://doi.org/10.2174/1381612826666200116142922

- Kritchenkov, I.S., et al., Functionalized Pt (II) and Ir (III) NIR emitters and their covalent conjugates with polymer-based nanocarriers. Bioconjugate Chemistry, 2020. DOI: https://doi.org/10.1021/acs.bioconjchem.0c00020

- Kapadia, C.H., et al., Polymer nanocarriers for MicroRNA delivery. Journal of Applied Polymer Science, 2020. 137(25): p. 48651. DOI: https://doi.org/10.1002/app.48651

- Rehman, A., et al., Carotenoid-loaded nanocarriers: A comprehensive review. Advances in colloid and interface science, 2020. 275: p. 102048. DOI: https://doi.org/10.1016/j.cis.2019.102048

- Sharma, S., et al., PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC trends in analytical chemistry, 2016. 80: p. 30-40. DOI: https://doi.org/10.1016/j.trac.2015.06.014

- Rezvantalab, S., et al., PLGA-based nanoparticles in cancer treatment. Frontiers in pharmacology, 2018. 9: p. 1260. DOI: https://doi.org/10.3389/fphar.2018.01260

- Shen, X., et al., PLGA-Based Drug Delivery Systems for Remotely Triggered Cancer Therapeutic and Diagnostic Applications. Frontiers in Bioengineering and Biotechnology, 2020. 8: p. 381. DOI: https://doi.org/10.3389/fbioe.2020.00381

- Comparetti, E.J., V.d.A. Pedrosa, and R. Kaneno, Carbon nanotube as a tool for fighting cancer. Bioconjugate chemistry, 2017. 29(3): p. 709-718. DOI: https://doi.org/10.1021/acs.bioconjchem.7b00563

- Jia, X., et al., An immunochromatographic assay for carcinoembryonic antigen on cotton thread using a composite of carbon nanotubes and gold nanoparticles as reporters. Analytica chimica acta, 2017. 969: p. 57-62. DOI: https://doi.org/10.1016/j.aca.2017.02.040

- Raphey, V., et al., Advanced biomedical applications of carbon nanotube. Materials Science and Engineering: C, 2019. DOI: https://doi.org/10.1016/j.msec.2019.03.043

- He, H., et al., Effective and Selective Anti‐Cancer Protein Delivery via All‐Functions‐in‐One Nanocarriers Coupled with Visible Light‐Responsive, Reversible Protein Engineering. Advanced Functional Materials, 2018. 28(14): p. 1706710. DOI: https://doi.org/10.1002/adfm.201706710

- Céspedes, M.V., et al., Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4+ colorectal cancer models. Nanomedicine: Nanotechnology, Biology and Medicine, 2016. 12(7): p. 1987-1996. DOI: https://doi.org/10.1016/j.nano.2016.04.003

- Kudarha, R.R. and K.K. Sawant, Albumin based versatile multifunctional nanocarriers for cancer therapy: fabrication, surface modification, multimodal therapeutics and imaging approaches. Materials Science and Engineering: C, 2017. 81: p. 607-626. DOI: https://doi.org/10.1016/j.msec.2017.08.004

- Lin, G., et al., Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics. Advanced science, 2016. 3(11): p. 1600134. DOI: https://doi.org/10.1002/advs.201600134

- Sun, Y., et al., Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 2020. 12: p. 1-29. DOI: https://doi.org/10.1007/s40820-020-00423-3

- Castillo, R.R., M. Colilla, and M. Vallet-Regí, Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert opinion on drug delivery, 2017. 14(2): p. 229-243. DOI: https://doi.org/10.1080/17425247.2016.1211637

- Guisasola, E., et al., Beyond traditional hyperthermia: In vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS applied materials & interfaces, 2018. 10(15): p. 12518-12525. DOI: https://doi.org/10.1021/acsami.8b02398

- Zou, Y., et al., Virus‐mimicking chimaeric polymersomes boost targeted cancer siRNA therapy in vivo. Advanced Materials, 2017. 29(42): p. 1703285. DOI: https://doi.org/10.1002/adma.201703285

- Chen, C.-C., et al., Chemically activatable viral capsid functionalized for cancer targeting. Nanomedicine, 2016. 11(4): p. 377-390. DOI: https://doi.org/10.2217/nnm.15.207

- Low, K.P., et al., Novel delivery of Chlorin e6 using anti-EGFR antibody tagged virosomes for fluorescence diagnosis of oral cancer in a hamster cheek pouch model. European Journal of Pharmaceutical Sciences, 2016. 83: p. 143-154. DOI: https://doi.org/10.1016/j.ejps.2015.12.023

- Blom, R.A., et al., Virosome-bound antigen enhances DC-dependent specific CD4+ T cell stimulation, inducing a Th1 and Treg profile in vitro. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(5): p. 1725-1737. DOI: https://doi.org/10.1016/j.nano.2017.02.004

- Safari, H., J.K.-H. Lee, and O. Eniola-Adefeso, Effects of shape, rigidity, size, and flow on targeting, in Nanoparticles for Biomedical Applications. 2020, Elsevier. p. 55-66. DOI: https://doi.org/10.1016/B978-0-12-816662-8.00005-9

- 35. Efendy Goon, D., et al., Palm Oil in Lipid-Based Formulations and Drug Delivery Systems. Biomolecules, 2019. 9(2): p. 64. DOI: https://doi.org/10.3390/biom9020064

- Feeney, O.M., et al., 50 years of oral lipid-based formulations: provenance, progress and future perspectives. Advanced drug delivery reviews, 2016. 101: p. 167-194. DOI: https://doi.org/10.1016/j.addr.2016.04.007

- Williams, H.D., et al., Unlocking the full potential of lipid-based formulations using lipophilic salt/ionic liquid forms. Advanced drug delivery reviews, 2019. 142: p. 75-90. DOI: https://doi.org/10.1016/j.addr.2019.05.008

- Kumar, S. and J.K. Randhawa, High melting lipid-based approach for drug delivery: solid lipid nanoparticles. Materials Science and Engineering: C, 2013. 33(4): p. 1842-1852. DOI: https://doi.org/10.1016/j.msec.2013.01.037

- Torchilin, V.P., Lipid-based parenteral drug delivery systems: biological implications. Role of Lipid Excipients in Modifying Oral and Parenteral Drug Delivery. Hoboken, New Jersey: Wiley-Interscience, 2007: p. 48-87. DOI: https://doi.org/10.1002/9780470097984.ch3

- Gan, L., et al., Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug discovery today, 2013. 18(5-6): p. 290-297. DOI: https://doi.org/10.1016/j.drudis.2012.10.005

- Gomes-da-Silva, L.g.C., et al., Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Accounts of chemical research, 2012. 45(7): p. 1163-1171. DOI: https://doi.org/10.1021/ar300048p

- Wieland, K., et al., Nanoscale chemical imaging of individual chemotherapeutic cytarabine-loaded liposomal nanocarriers. Nano Research, 2019. 12(1): p. 197-203. DOI: https://doi.org/10.1007/s12274-018-2202-x

- Hossen, S., et al., Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of advanced research, 2019. 15: p. 1-18. DOI: https://doi.org/10.1016/j.jare.2018.06.005

- Kim, C.H., et al., Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. Journal of Pharmaceutical Investigation, 2017. 47(3): p. 203-227. DOI: https://doi.org/10.1007/s40005-017-0329-5

- Malam, Y., M. Loizidou, and A.M. Seifalian, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in pharmacological sciences, 2009. 30(11): p. 592-599. DOI: https://doi.org/10.1016/j.tips.2009.08.004

- Perche, F. and V.P. Torchilin, Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. Journal of drug delivery, 2013. 2013. DOI: https://doi.org/10.1155/2013/705265

- Raj, R., P.M. Raj, and A. Ram, Lipid based noninvasive vesicular formulation of cytarabine: nanodeformable liposomes. European Journal of Pharmaceutical Sciences, 2016. 88: p. 83-90. DOI: https://doi.org/10.1016/j.ejps.2016.04.002

- Pearce, A.K., et al., Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic. Biomaterials, 2017. 141: p. 330-339. DOI: https://doi.org/10.1016/j.biomaterials.2017.07.004

- Sercombe, L., et al., Advances and challenges of liposome assisted drug delivery. Frontiers in pharmacology, 2015. 6: p. 286. DOI: https://doi.org/10.3389/fphar.2015.00286

- Muthu, M.S. and S.-S. Feng, Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. 2013, Taylor & Francis.

- Zahednezhad, F., et al., Liposome and immune system interplay: Challenges and potentials. Journal of Controlled Release, 2019. DOI: https://doi.org/10.1016/j.jconrel.2019.05.030

- Gradauer, K., et al., Chemical coupling of thiolated chitosan to preformed liposomes improves mucoadhesive properties. International journal of nanomedicine, 2012. 7: p. 2523. DOI: https://doi.org/10.2147/IJN.S29980

- Shtenberg, Y., et al., Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. International journal of biological macromolecules, 2018. 111: p. 62-69. DOI: https://doi.org/10.1016/j.ijbiomac.2017.12.137

- Mackie, A.R., et al., Innovative methods and applications in mucoadhesion research. Macromolecular bioscience, 2017. 17(8): p. 1600534. DOI: https://doi.org/10.1002/mabi.201600534

- Guo, H., et al., Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. Journal of Controlled Release, 2017. 259: p. 136-148. DOI: https://doi.org/10.1016/j.jconrel.2016.12.041

- Maeda, H. and M. Khatami, Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clinical and translational medicine, 2018. 7(1): p. 11. DOI: https://doi.org/10.1186/s40169-018-0185-6

- Poonawalla, I.B., et al., Cost effectiveness of chemotherapeutic agents and targeted biologics in ovarian cancer: a systematic review. Pharmacoeconomics, 2015. 33(11): p. 1155-1185. DOI: https://doi.org/10.1007/s40273-015-0304-9

- Nowotnik, D.P. and E. Cvitkovic, ProLindac™(AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic. Advanced drug delivery reviews, 2009. 61(13): p. 1214-1219. DOI: https://doi.org/10.1016/j.addr.2009.06.004

- Wilson, R., et al., Phase I and pharmacokinetic study of NC-6004, a new platinum entity of cisplatin-conjugated polymer forming micelles. Journal of Clinical Oncology, 2008. 26(15_suppl): p. 2573-2573. DOI: https://doi.org/10.1200/jco.2008.26.15_suppl.2573

- Feng, Q. and R. Tong, Anticancer nanoparticulate polymer‐drug conjugate. Bioengineering & translational medicine, 2016. 1(3): p. 277-296. DOI: https://doi.org/10.1002/btm2.10033

- Natfji, A.A., H.M. Osborn, and F. Greco, Feasibility of polymer-drug conjugates for non-cancer applications. Current opinion in colloid & interface science, 2017. 31: p. 51-66. DOI: https://doi.org/10.1016/j.cocis.2017.07.004

- Vogus, D.R., V. Krishnan, and S. Mitragotri, A review on engineering polymer drug conjugates to improve combination chemotherapy. Current opinion in colloid & interface science, 2017. 31: p. 75-85. DOI: https://doi.org/10.1016/j.cocis.2017.08.002

- Ekladious, I., Y.L. Colson, and M.W. Grinstaff, Polymer–drug conjugate therapeutics: advances, insights and prospects. Nature reviews Drug discovery, 2019. 18(4): p. 273-294. DOI: https://doi.org/10.1038/s41573-018-0005-0

- Yang, R., et al., Combination therapy of paclitaxel and cyclopamine polymer-drug conjugates to treat advanced prostate cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(2): p. 391-401. DOI: https://doi.org/10.1016/j.nano.2016.07.017

- Chang, M., et al., Smart linkers in polymer–drug conjugates for tumor-targeted delivery. Journal of drug targeting, 2016. 24(6): p. 475-491. DOI: https://doi.org/10.3109/1061186X.2015.1108324

- Arroyo‐Crespo, J.J., et al., Anticancer activity driven by drug linker modification in a polyglutamic acid‐based combination‐drug conjugate. Advanced Functional Materials, 2018. 28(22): p. 1800931. DOI: https://doi.org/10.1002/adfm.201800931

- Vicent, M.J., et al., Polymer therapeutics designed for a combination therapy of hormone‐dependent cancer. Angewandte Chemie International Edition, 2005. 44(26): p. 4061-4066. DOI: https://doi.org/10.1002/anie.200462960

- Beer, T.M., et al., A phase II study of paclitaxel poliglumex in combination with transdermal estradiol for the treatment of metastatic castration-resistant prostate cancer after docetaxel chemotherapy. Anti-cancer drugs, 2010. 21(4): p. 433-438. DOI: https://doi.org/10.1097/CAD.0b013e3283355211

- Bilim, V., Technology evaluation: PK1, Pfizer/Cancer Research UK. Current opinion in molecular therapeutics, 2003. 5(3): p. 326-330.

- Mandal, A., et al., Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. Journal of Controlled Release, 2017. 248: p. 96-116. DOI: https://doi.org/10.1016/j.jconrel.2017.01.012

- Chen, G., et al., Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging. Biomaterials, 2015. 47: p. 41-50. DOI: https://doi.org/10.1016/j.biomaterials.2015.01.006

- Xia, H., Y. Zhao, and R. Tong, Ultrasound-mediated polymeric micelle drug delivery, in Therapeutic Ultrasound. 2016, Springer. p. 365-384. DOI: https://doi.org/10.1007/978-3-319-22536-4_20

- Biswas, S., et al., Recent advances in polymeric micelles for anti-cancer drug delivery. European Journal of Pharmaceutical Sciences, 2016. 83: p. 184-202. DOI: https://doi.org/10.1016/j.ejps.2015.12.031

- Jhaveri, A.M. and V.P. Torchilin, Multifunctional polymeric micelles for delivery of drugs and siRNA. Frontiers in pharmacology, 2014. 5: p. 77. DOI: https://doi.org/10.3389/fphar.2014.00077

- Shi, Y., et al., Physico‐Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for Tumor‐Targeted Drug Delivery. Macromolecular bioscience, 2017. 17(1): p. 1600160. DOI: https://doi.org/10.1002/mabi.201600160

- Han, S.S., et al., Dual‐pH sensitive charge‐reversal polypeptide micelles for tumor‐triggered targeting uptake and nuclear drug delivery. Small, 2015. 11(21): p. 2543-2554. DOI: https://doi.org/10.1002/smll.201402865

- Kedar, U., et al., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(6): p. 714-729. DOI: https://doi.org/10.1016/j.nano.2010.05.005

- Kim, S.C., et al., In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. Journal of Controlled Release, 2001. 72(1-3): p. 191-202. DOI: https://doi.org/10.1016/S0168-3659(01)00275-9

- Deng, C., et al., A Novel Paclitaxel-Loaded Polymeric Micelle System with Favorable Biocompatibility and Superior Antitumor Activity. Anticancer research, 2018. 38(1): p. 219-225. DOI: https://doi.org/10.21873/anticanres.12211

- Wang, X., et al., Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydrate polymers, 2019. 206: p. 121-131. DOI: https://doi.org/10.1016/j.carbpol.2018.10.096

- Chen, Y., et al., Spermine modified polymeric micelles with pH-sensitive drug release for targeted and enhanced antitumor therapy. RSC advances, 2019. 9(20): p. 11026-11037. DOI: https://doi.org/10.1039/C9RA00834A

- Bauer, M., et al., Poly (2‐ethyl‐2‐oxazoline) as Alternative for the Stealth Polymer Poly (ethylene glycol): Comparison of in vitro Cytotoxicity and Hemocompatibility. Macromolecular bioscience, 2012. 12(7): p. 986-998. DOI: https://doi.org/10.1002/mabi.201200017

- Li, J., et al., Poly (2-ethyl-2-oxazoline)–doxorubicin conjugate-based dual endosomal pH-sensitive micelles with enhanced antitumor efficacy. Bioconjugate chemistry, 2014. 26(1): p. 110-119. DOI: https://doi.org/10.1021/bc5004718

- Marzbali, M.Y. and A.Y. Khosroushahi, Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer chemotherapy and pharmacology, 2017. 79(4): p. 637-649. DOI: https://doi.org/10.1007/s00280-017-3273-1

- Almeida, M., et al., Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. Journal of Polymer Research, 2018. 25(1): p. 31. DOI: https://doi.org/10.1007/s10965-017-1426-x

- Sharma, A.K., et al., Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discovery Today, 2017. 22(2): p. 314-326. DOI: https://doi.org/10.1016/j.drudis.2016.09.013

- Haley, B. and E. Frenkel. Nanoparticles for drug delivery in cancer treatment. in Urologic Oncology: Seminars and original investigations. 2008. Elsevier. DOI: https://doi.org/10.1016/j.urolonc.2007.03.015

- Hsu, H.J., et al., Dendrimer‐based nanocarriers: a versatile platform for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017. 9(1): p. e1409. DOI: https://doi.org/10.1002/wnan.1409

- Bharali, D.J., et al., Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. International journal of nanomedicine, 2009. 4: p. 1. DOI: https://doi.org/10.2147/IJN.S4241

- Wang, A.Z., R. Langer, and O.C. Farokhzad, Nanoparticle delivery of cancer drugs. Annual review of medicine, 2012. 63: p. 185-198. DOI: https://doi.org/10.1146/annurev-med-040210-162544

- Wang, H., et al., Stimuli-responsive dendrimers in drug delivery. Biomaterials science, 2016. 4(3): p. 375-390. DOI: https://doi.org/10.1039/C5BM00532A

- Cheng, Y., et al., Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chemical Society Reviews, 2011. 40(5): p. 2673-2703. DOI: https://doi.org/10.1039/c0cs00097c

- Akbarzadeh, A., et al., Role of dendrimers in advanced drug delivery and biomedical applications: a review. Experimental oncology, 2018. DOI: https://doi.org/10.31768/2312-8852.2018.40(3):178-183

- Yang, H., Targeted nanosystems: Advances in targeted dendrimers for cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 2016. 12(2): p. 309-316. DOI: https://doi.org/10.1016/j.nano.2015.11.012

- Jain, N.K., et al., The development, characterization and in vivo anti-ovarian cancer activity of poly (propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine: Nanotechnology, Biology and Medicine, 2015. 11(1): p. 207-218. DOI: https://doi.org/10.1016/j.nano.2014.09.006

- Cunningham, D., et al., Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. Journal of Clinical Oncology, 2009. 27(33): p. 5513-5518. DOI: https://doi.org/10.1200/JCO.2009.24.2446

- Neoptolemos, J., et al., Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. The Lancet, 2001. 358(9293): p. 1576-1585. DOI: https://doi.org/10.1016/S0140-6736(01)06651-X

- Zuckerman, J.E. and M.E. Davis, Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nature reviews Drug discovery, 2015. 14(12): p. 843. DOI: https://doi.org/10.1038/nrd4685

- Tambe, V., et al., Surface engineered dendrimers in siRNA delivery and gene silencing. Current pharmaceutical design, 2017. 23(20): p. 2952-2975. DOI: https://doi.org/10.2174/1381612823666170314104619

- Chittasupho, C., S. Anuchapreeda, and N. Sarisuta, CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. European Journal of Pharmaceutics and Biopharmaceutics, 2017. 119: p. 310-321. DOI: https://doi.org/10.1016/j.ejpb.2017.07.003

- Mishra, B., B.B. Patel, and S. Tiwari, Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, biology and med-icine, 2010. 6(1): p. 9-24. DOI: https://doi.org/10.1016/j.nano.2009.04.008

- Mehrafrooz, B., M.Z. Pedram, and E. Ghafar-Zadeh, An improved method for magnetic nanocarrier drug delivery across the cell membrane. Sensors, 2018. 18(2): p. 381. DOI: https://doi.org/10.3390/s18020381

- Chertok, B., et al., Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 2008. 29(4): p. 487-496. DOI: https://doi.org/10.1016/j.biomaterials.2007.08.050

- Hervault, A., et al., Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale, 2016. 8(24): p. 12152-12161.

- Hervault, A., Development of a doxorubicin-loaded dual pH-and thermo-responsive magnetic nanocarrier for application in magnetic hyperthermia and drug delivery in cancer therapy. 2017, UCL (University College London). DOI: https://doi.org/10.1039/C5NR07773G

- He, Q., Z. Wu, and C. Huang, Hollow magnetic nanoparticles: synthesis and applications in biomedicine. Journal of nanoscience and nanotechnology, 2012. 12(4): p. 2943-2954. DOI: https://doi.org/10.1166/jnn.2012.5679

- Singh, A. and S.K. Sahoo, Magnetic nanoparticles: a novel platform for cancer theranostics. Drug discovery today, 2014. 19(4): p. 474-481. DOI: https://doi.org/10.1016/j.drudis.2013.10.005

- Shin, T.-H., et al., Recent advances in magnetic nanoparticle-based multi-modal imaging. Chemical Society Reviews, 2015. 44(14): p. 4501-4516. DOI: https://doi.org/10.1039/C4CS00345D

- Indira, T. and P. Lakshmi, Magnetic nanoparticles–a review.

- Pourjavadi, A., S.S. Amin, and S.H. Hosseini, Delivery of hydrophobic anticancer drugs by hydrophobically modified alginate based magnetic nanocarrier. Industrial & Engineering Chemistry Research, 2018. 57(3): p. 822-832. DOI: https://doi.org/10.1021/acs.iecr.7b04050

- Krishnan, K.M., Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE transactions on magnetics, 2010. 46(7): p. 2523-2558. DOI: https://doi.org/10.1109/TMAG.2010.2046907

- Rivera-Rodriguez, A., et al., Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. International journal of nanomedicine, 2018. 13: p. 4771. DOI: https://doi.org/10.2147/IJN.S171130

- Saleem, J., L. Wang, and C. Chen, Carbon‐Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Advanced healthcare materials, 2018. 7(20): p. 1800525. DOI: https://doi.org/10.1002/adhm.201800525

Downloads

Published

2022-04-19

How to Cite

Ghaidaa S. Hameed, & Methaq Hamad Sabar. (2022). Nano-carriers as a Selective Treatment for Cancer . Al Mustansiriyah Journal of Pharmaceutical Sciences, 21(1), 55–66. https://doi.org/10.32947/ajps.v21i1.802