Formulation and in-vitro Evaluation of Ethosomes using Anastrozole as a Modeling Drug

Authors

  • Neven Nasef AlEbadi College of Pharmacy, University of Basrah, Basrah, Iraq
  • Mohammed Sabar Al-Lami College of Pharmacy, University of Basrah, Basrah, Iraq

DOI:

https://doi.org/10.32947/ajps.v22i4.971

Keywords:

Anastrozole, Ethosomes, Transdermal, Drug delivery, Phosphatidyl choline

Abstract

Anastrozole (ANZ) is a potent non-steroidal aromatase II inhibitor (AI) used to decrease or delay the progression of breast tumor growth in some women. Since ANZ could be delivered transdermally due to its physicochemical characteristics as (log p of 3.5, aqueous solubility of 0.5 mg /mL, low dosage and half-life of 46.8 hr.)   so, it could be used as a modelling drug evaluation of ethosomes, the current study aimed to formulate ANZ loaded ethosomes and evaluate the formulated ethosomes for particle size and PDI, entrapment efficiency and in vitro release profile. Film hydration method was used to prepare ANZ-loaded ethosoms. using different ratios of phospholipid (Soy phosphatidyl choline) and ethanol at variables probe sonication energy and time ratios.

 polydispersity index and particle size were used to evaluate the prepared ANZ-loaded ethosoms. The optimized formula of ethosomes which contain (1% Soy phosphatidyl choline,20% ethanol subjected to 300watt sonication energy with 1/3 sonication on /off ratio) was studied for in vitro drug release. It had 127.75±0.36 nm particle diameter and 74.7136 ± 3.457 % entrapment efficiency, the release kinetics obey Korsmeyer-Peppas and non-Fickian release as R2=0.9779 and n=0.737.

 The ratios of Soy phosphatidyl choline, ethanol, sonication energy and duration had a significant impact on the particle size of ethosomes at (p0.05). The preformulating analysis of Powder X-ray diffraction (P-XRD) indicate amorphous ethosomes. Fourier transform infrared (FTIR) showed the inertness among components.

References

- Jain S, Tripathi S, Tripathi PK. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. Journal of Drug Delivery Science and Technology. 2021; 61:102166. DOI: https://doi.org/10.1016/j.jddst.2020.102166

- Amr Gamal F, Kharshoum RM, Sayed OM, El-Ela FIA, Salem HF. Control of basal cell carcinoma via positively charged ethosomes of Vismodegib: In vitro and in vivo studies. Journal of Drug Delivery Science and Technology. 2020; 56:101556. DOI: https://doi.org/10.1016/j.jddst.2020.101556

- Sakdiset P, Amnuaikit T, Pichayakorn W, Pinsuwan S. Formulation development of ethosomes containing indomethacin for transdermal delivery. Journal of Drug Delivery Science and Technology. 2019; 52:760-8. DOI: https://doi.org/10.1016/j.jddst.2019.05.048

- Nainwal N, Jawla S, Singh R, Saharan VA. Transdermal applications of ethosomes - a detailed review. Journal of liposome research. 2019;29(2):103-13. DOI: https://doi.org/10.1080/08982104.2018.1517160

- Caroline S. Zeind and Michael G. Carvalho. Applied therapeutics the clincal use of drug, eleventh ed. Philadelphia Wolters Kluwer Health; 2018.

- Vidya KS, Lakshmi PK. Cytotoxic effect of transdermal invasomal anastrozole gel on MCF-7 breast cancer cell line. J Journal of Applied Pharmaceutical Science. 2019.

- BM, Fahmy UA, Abd-Allah FI. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles:Preparation, characterization, in vitro, ex vivo and clinical evaluation. International journal of pharmaceutics. 2016;500(1-2):245-54. DOI: https://doi.org/10.1016/j.ijpharm.2016.01.017

- Bendas ER, Tadros MI. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech. 2007;8(4):213. DOI: https://doi.org/10.1208/pt0804107

- Dave V, Bhardwaj N, Gupta N, Tak K. Herbal ethosomal gel containing luliconazole for productive relevance in the field of biomedicine. 3 Biotech. 2020;10(3):97. DOI: https://doi.org/10.1007/s13205-020-2083-z

- Abdulbaqi IM, Darwis Y, Khan NA, Assi RA, Khan AA. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. International journal of nanomedicine. 2016; 11:2279-304. DOI: https://doi.org/10.2147/IJN.S105016

- López-Pinto JM, González-Rodríguez ML, Rabasco AM. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. International journal of pharmaceutics. 2005;298(1):1-12. DOI: https://doi.org/10.1016/j.ijpharm.2005.02.021

- Huda S. Kadhium NKM. Preparation and in Vitro Evaluation of Soya Lecithin Based Nano Transfersomal Dispersion for Loxoprofen Sodium. Al Mustansiriyah Journal of Pharmaceutical Sciences, 2019; Vol.19, No.4. DOI: https://doi.org/10.32947/ajps.v19i4.642

- Bunaciu AA, Udriştioiu Eg, Aboul-Enein HY. X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry. 2015;45(4):289-99. DOI: https://doi.org/10.1080/10408347.2014.949616

- Niu XQ, Zhang DP, Bian Q, Feng XF, Li H, Rao YF, et al. Mechanism investigation of ethosomes transdermal permeation. International journal of pharmaceutics: X. 2019; 1:100027. DOI: https://doi.org/10.1016/j.ijpx.2019.100027

- Esraa Ghazy AA, Jafar Jaber Al-Tamimi and Nawal Ayash. AJPS, 2016, Vol. 16, No.2Date of acceptance:22-12-20151Nebivolol Hydrochloride Loaded Nanostructured Lipid Carriers as Transdermal Delivery System: Part 1: Preparation,Characterization and In Vitro Evaluation. AlMustansiryah journal of pharmaceutical sciences 2016; Vol. 16 No. 2 (2016): volume 16, Issue 2. 2016.

- JABBAR ASAJSRP. In-vitro; ex-vivo assessment of anti-inflammatory Tapentadol loaded non-ionic surfactant vesicular systems for effective transdermal delivery. J Sys Rev Pharm. 2020;11(12):636-43.

- Paarakh MP, Jose PA, Setty C, Christoper G. Release kinetics–concepts and applications. Int J Pharm Res Technol. 2018;8(1):12-20.

- Paliwal S, Tilak A, Sharma J, Dave V, Sharma S, Yadav R, et al. Flurbiprofen loaded ethosomes-transdermal delivery of anti-inflammatory effect in rat model. J Lipids in health. 2019;18(1):1-15. DOI: https://doi.org/10.1186/s12944-019-1064-x

- Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57; doi:103390 /pharmaceutics10020057. 2018;10(2):57.

- Zhao L, Temelli F, Curtis JM, Chen L. Preparation of liposomes using supercritical carbon dioxide technology: Effects of phospholipids and sterols. Food Research International. 2015; 77:63-72. DOI: https://doi.org/10.1016/j.foodres.2015.07.006

- Zhu X, Li F, Peng X, Zeng KJA, Analgesia. Formulation and evaluation of lidocaine base ethosomes for transdermal delivery. International Anesthesia Research Society DOI: 101213/ ANE0b013e3182937b74. 2013;117(2):352-7. DOI: https://doi.org/10.1213/ANE.0b013e3182937b74

- Pratap-Singh A, Guo Y, Lara Ochoa S, Fathordoobady F, Singh A. Optimal ultrasonication process time remains constant for a specific nanoemulsion size reduction system. Scientific Reports. 2021;11(1):9241. DOI: https://doi.org/10.1038/s41598-021-87642-9

- Alipour E, Halverson D, McWhirter S, Walker GC. Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles. The Annual Review ofPhysical Chemistry. 2017;68 (1):261-83. DOI: https://doi.org/10.1146/annurev-physchem-040215-112634

- Nguyen VS, Rouxel D, Hadji R, Vincent B, Fort Y. Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrasonics Sonochemistry. 2011;18(1):382-8. DOI: https://doi.org/10.1016/j.ultsonch.2010.07.003

- Siddiqui A, Alayoubi A, El-Malah Y, Nazzal S. Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM). Pharmaceutical Development and Technology. 2014;19(3):342-6. DOI: https://doi.org/10.3109/10837450.2013.784336

- Hashim AA-J, Rajab NAJIJoPS. Anastrozole Loaded Nanostructured Lipid Carriers: Preparation and Evaluation. J Iraqi Journal of Pharmaceutical Sciences. 2021 ;30(2):185-95. DOI: https://doi.org/10.31351/vol30iss2pp185-195

- Stuart BH. Infrared spectroscopy: fundamentals and applications: John Wiley & Sons; 2004. DOI: https://doi.org/10.1002/0470011149

- Zhai Y, Xu R, Wang Y, Liu J, Wang Z, Zhai G. Ethosomes for skin delivery of ropivacaine: preparation, characterization and ex vivo penetration properties. Journal of liposome research. 2015;25(4):316-24. DOI: https://doi.org/10.3109/08982104.2014.999686

- Iizhar SA, Syed IA, Satar R, Ansari SA. In vitro assessment of pharmaceutical potential of ethosomes entrapped with terbinafine hydrochloride. Journal of Advanced Research. 2016;7(3):453-61. DOI: https://doi.org/10.1016/j.jare.2016.03.003

- Barupal AK, Gupta V, Ramteke S. Preparation and Characterization of Ethosomes for Topical delivery of Aceclofenac. Indian journal of pharmaceutical sciences. 2010 ;72(5):582-6. DOI: https://doi.org/10.4103/0250-474X.78524

- Chourasia MK, Kang L, Chan SY. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results in Pharma Sciences. 2011;1(1):60-7. DOI: https://doi.org/10.1016/j.rinphs.2011.10.002

- Abed HN. Dabigatran Etexilate Loaded Nanostructured Lipid Carriers: Formulation, Evaluation and Ex-vivo Intestinal Permeation university of baghdad; 2019.

Downloads

Published

2023-01-15

How to Cite

Neven Nasef AlEbadi, & Mohammed Sabar Al-Lami. (2023). Formulation and in-vitro Evaluation of Ethosomes using Anastrozole as a Modeling Drug . Al Mustansiriyah Journal of Pharmaceutical Sciences, 22(4), 90–105. https://doi.org/10.32947/ajps.v22i4.971